Dergi makalesi Erişime Kapalı

p-adic distance and k-Nearest Neighbor classification

Kartal, Elif; Çalışkan, Fatma; Eskişehirli, Beyaz Başak; Özen, Zeki


JSON

{
  "conceptrecid": "273846", 
  "created": "2024-08-20T13:39:57.581142+00:00", 
  "doi": "10.1016/j.neucom.2024.127400", 
  "id": 273847, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.neucom.2024.127400.svg", 
    "doi": "https://doi.org/10.1016/j.neucom.2024.127400", 
    "html": "https://aperta.ulakbim.gov.tr/record/273847", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/273847", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/273847"
  }, 
  "metadata": {
    "access_right": "closed", 
    "access_right_category": "danger", 
    "creators": [
      {
        "affiliation": "\u0130stanbul \u00dcniversitesi \u0130ktisat Fak\u00fcltesi Y\u00f6netim Bili\u015fim Sistemleri B\u00f6l\u00fcm\u00fc", 
        "name": "Kartal, Elif", 
        "orcid": "0000-0003-4667-1806"
      }, 
      {
        "affiliation": "\u0130stanbul \u00dcniversitesi Fen Fak\u00fcltesi Matematik B\u00f6l\u00fcm\u00fc", 
        "name": "\u00c7al\u0131\u015fkan, Fatma", 
        "orcid": "0000-0001-7869-870X"
      }, 
      {
        "affiliation": "\u0130stanbul \u00dcniversitesi Fen Fak\u00fcltesi Matematik B\u00f6l\u00fcm\u00fc", 
        "name": "Eski\u015fehirli, Beyaz Ba\u015fak", 
        "orcid": "0000-0002-6481-6020"
      }, 
      {
        "affiliation": "\u0130stanbul \u00dcniversitesi \u0130ktisat Fak\u00fcltesi Y\u00f6netim Bili\u015fim Sistemleri B\u00f6l\u00fcm\u00fc", 
        "name": "\u00d6zen, Zeki", 
        "orcid": "0000-0001-9298-3371"
      }
    ], 
    "description": "<p>The k-Nearest Neighbor (k-NN) is a well-known supervised learning algorithm. The effect of the distance used in the analysis on the k-NN performance is very important. According to Ostrowski&rsquo;s theorem, there are only two nontrivial absolute values on the field of rational numbers, Q, which are the usual absolute value and the p-adic absolute value for a prime p. In view of this theorem, the p-adic absolute value motivates us to calculate the p-adic distance between two samples for the k-NN algorithm. In this study, the p-adic distance on Q was coupled with the k-NN algorithm and was applied to 10 well-known public datasets containing categorical, numerical, and mixed (both categorical and numerical) type predictive attributes. Moreover, the p-adic distance performance was compared with Euclidean, Manhattan, Chebyshev, and Cosine distances. It was seen that the average accuracy obtained from the p-adic distance ranks first in 5 out of 10 datasets. Especially, in mixed datasets, the p-adic distance gave better results than other distances. For r=1,2,3, the effect of the r-decimal values of the number for the p-adic calculation was examined on numerical and mixed datasets. In addition, the p parameter of the p-adic distance was tested with prime numbers less than 29, and it was found that the average accuracy obtained for each p was very close to each other, especially in categorical and mixed datasets. Also, it can be concluded that k-NN with the p-adic distance may be more suitable for binary classification than multi-class classification.</p>", 
    "doi": "10.1016/j.neucom.2024.127400", 
    "has_grant": true, 
    "journal": {
      "pages": "1-7", 
      "title": "Neurocomputing", 
      "volume": "578"
    }, 
    "keywords": [
      "Classification", 
      "Metric", 
      "k-NN", 
      "The p-adic distance", 
      "Machine learning"
    ], 
    "language": "eng", 
    "publication_date": "2024-04-14", 
    "related_identifiers": [
      {
        "identifier": "10.1016/j.neucom.2024.127400", 
        "relation": "isIdenticalTo", 
        "scheme": "doi"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "273847"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "273846"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Teknik Bilimler > Bilgisayar Bilimleri > Yapay Zeka, Bilgisayarda \u00d6\u011frenme ve \u00d6r\u00fcnt\u00fc Tan\u0131ma > Bilgisayar \u00d6\u011frenimi", 
      "Temel Bilimler > Matematik > Genel Matematik"
    ], 
    "title": "p-adic distance and k-Nearest Neighbor classification", 
    "tubitak_grants": [
      {
        "program": "1002", 
        "project_number": "123E293", 
        "workgroup": "EEEAG"
      }
    ]
  }, 
  "owners": [
    2301
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 3.0, 
    "unique_downloads": 2.0, 
    "unique_views": 193.0, 
    "version_downloads": 3.0, 
    "version_unique_downloads": 2.0, 
    "version_unique_views": 193.0, 
    "version_views": 237.0, 
    "version_volume": 4000140.0, 
    "views": 237.0, 
    "volume": 4000140.0
  }, 
  "updated": "2024-08-20T13:39:57.816334+00:00"
}
237
3
görüntülenme
indirilme
Görüntülenme 237
İndirme 3
Veri hacmi 4.0 MB
Tekil görüntülenme 193
Tekil indirme 2

Alıntı yap