Dergi makalesi Açık Erişim

A comprehensive review of convolutional neural networks based disease detection strategies in potato agriculture

Gülmez, Burak


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/273831</identifier>
  <creators>
    <creator>
      <creatorName>Gülmez, Burak</creatorName>
      <givenName>Burak</givenName>
      <familyName>Gülmez</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6870-6558</nameIdentifier>
      <affiliation>Mudanya University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Comprehensive Review Of Convolutional Neural Networks Based Disease Detection Strategies In Potato Agriculture</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2024</publicationYear>
  <dates>
    <date dateType="Issued">2024-08-23</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/273831</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11540-024-09786-1</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nd/4.0/">Creative Commons Attribution-NoDerivatives</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;A comprehensive review of convolutional neural networks based disease detection strategies in potato agriculture&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;This review paper investigates the utilization of Convolutional Neural Networks (CNNs) for disease detection in potato agriculture, highlighting their pivotal role in efficiently analyzing large-scale agricultural datasets. The datasets used, preprocessing methodologies applied, specific data collection zones, and the efficacy of prominent algorithms like ResNet, VGG, and MobileNet variants for disease classification are scrutinized. Additionally, various hyperparameter optimization techniques such as grid search, random search, genetic algorithms, and Bayesian optimization are examined, and their impact on model performance is assessed. Challenges including dataset scarcity, variability in disease symptoms, and the generalization of models across diverse environmental conditions are addressed in the discussion section. Opportunities for advancing CNN-based disease detection, including the integration of multi-spectral imaging and remote sensing data, and the implementation of federated learning for collaborative model training, are explored. Future directions propose research into robust transfer learning techniques and the deployment of CNNs in real-time monitoring systems for proactive disease management in potato agriculture. Current knowledge is consolidated, research gaps are identified, and avenues for future research in CNN-based disease detection strategies to sustain potato farming effectively are proposed by this review. This study paves the way for future advancements in AI-driven disease detection, potentially revolutionizing agricultural practices and enhancing food security. Also, it aims to guide future research and development efforts in CNN-based disease detection for potato agriculture, potentially leading to improved crop management practices, increased yields, and enhanced food security.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; Potato disease detection, Convolutional Neural Networks, Artificial intelligence in agriculture, Computer vision, Artificial intelligence&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Abbas A, Maqsood U, Ur Rehman S, et al (2024) An Artificial Intelligence Framework for Disease Detection in Potato Plants. Eng Technol Appl Sci Res 14:12628&amp;ndash;12635. https://doi.org/10.48084/etasr.6456&lt;/p&gt;

&lt;p&gt;Afzaal H, Farooque AA, Schumann AW, et al (2021) Detection of a potato disease (Early blight) using artificial intelligence. Remote Sens 13:1&amp;ndash;17. https://doi.org/10.3390/rs13030411&lt;/p&gt;

&lt;p&gt;Agarwal R, Mittal S, Sharma A, Hariharan U (2023) Enhancing Potato Disease Classification with Inception V3-Based Deep Learning Model. In: Int. Conf. Electron., Mater. Eng. Nano-Technol., IEMENTech. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Agrawal A, Fating A, Darvankar M, et al (2023) Potato Leaf Disease Identification with Multi-Stage Approach: A Comparative Study. In: IEEE Pune Sect. Int. Conf., PuneCon. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Akther J, Harun-Or-Roshid M, Nayan A-A, Kibria MG (2021) Transfer learning on VGG16 for the Classification of Potato Leaves Infected by Blight Diseases. In: Emerg. Technol. Comput., Commun. Electron., ETCCE. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Al-Amin M, Bushra TA, Hoq MN (2019) Prediction of Potato Disease from Leaves using Deep Convolution Neural Network towards a Digital Agricultural System. In: Int. Conf. Adv. Sci., Eng. Robot. Technol., ICASERT. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Ali FB, Deb Mohalder R, Akter R, et al (2023) Deep Transfer Learning Technique for Potato Leaf Diseases Classification. In: Int. Conf. Comput. Inf. Technol., ICCIT. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Anim-Ayeko AO, Schillaci C, Lipani A (2023) Automatic blight disease detection in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753) plants using deep learning. Smart Agricultural Technology 4:100178. https://doi.org/10.1016/j.atech.2023.100178&lt;/p&gt;

&lt;p&gt;Arafath M, Nithya AA, Gijwani S (2023) Tomato Leaf Disease Detection Using Deep Convolution Neural Network. In: Adv. Sci. Technol. Trans Tech Publications Ltd, pp 236&amp;ndash;245&lt;/p&gt;

&lt;p&gt;Arshaghi A, Ashourian M, Ghabeli L (2023) Potato diseases detection and classification using deep learning methods. Multimedia Tools Appl 82:5725&amp;ndash;5742. https://doi.org/10.1007/s11042-022-13390-1&lt;/p&gt;

&lt;p&gt;Arya S, Singh R (2019) A Comparative Study of CNN and AlexNet for Detection of Disease in Potato and Mango leaf. In: IEEE Int. Conf. Issues Challenges Intell. Comput. Techniques, ICICT. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Badoni P, Kaur G, Ishaq MM, Walia R (2023) Potato Disease Detection through Leafs: Leveraging Deep Learning Algorithms for Accurate Diagnosis. In: Int. Conf. Adv. Comput., Commun. Inf. Technol., ICAICCIT. Institute of Electrical and Electronics Engineers Inc., pp 181&amp;ndash;186&lt;/p&gt;

&lt;p&gt;Balakrishnan M, Raja M, Kumar PV, et al (2023) Potato Plant Leaf Disease Detection and Recognition Using R-CNN Model. In: Proc. - Int. Conf. Pervasive Comput. Soc. Netw., ICPCSN. Institute of Electrical and Electronics Engineers Inc., pp 605&amp;ndash;609&lt;/p&gt;

&lt;p&gt;Baranwal A, Mishra M, Goyal A (2022) Potato Plant Disease Classification Through Deep Learning. In: Int. Conf. Mach. Learn., Big Data, Cloud Parallel Comput., COM-IT-CON. Institute of Electrical and Electronics Engineers Inc., pp 673&amp;ndash;681&lt;/p&gt;

&lt;p&gt;Barman U, Sahu D, Barman GG, Das J (2020) Comparative Assessment of Deep Learning to Detect the Leaf Diseases of Potato based on Data Augmentation. In: Int. Conf. Comput. Perform. Eval., ComPE. Institute of Electrical and Electronics Engineers Inc., pp 682&amp;ndash;687&lt;/p&gt;

&lt;p&gt;Bonik CC, Akter F, Rashid MH, Sattar A (2023) A Convolutional Neural Network Based Potato Leaf Diseases Detection Using Sequential Model. In: Int. Conf. Adv. Technol., ICONAT. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Chaudary S, Bakshi K, Iniyan S (2023) Potato Plant Disease Detection and Classification for Improved Agriculture. In: Int. Conf. Autom., Comput. Renew. Syst., ICACRS - Proc. Institute of Electrical and Electronics Engineers Inc., pp 1388&amp;ndash;1396&lt;/p&gt;

&lt;p&gt;Deb S, Laboni MA, Hena MH (2020) Bangladeshi local potatoes dataset and classification using deep learning. In: Proc. Int. Conf. Intell. Sustain. Syst., ICISS. Institute of Electrical and Electronics Engineers Inc., pp 672&amp;ndash;676&lt;/p&gt;

&lt;p&gt;Devaux A, Kromann P, Ortiz O (2014) Potatoes for Sustainable Global Food Security. Potato Res 57:185&amp;ndash;199. https://doi.org/10.1007/s11540-014-9265-1&lt;/p&gt;

&lt;p&gt;Duarte-Carvajalino JM, Alzate DF, Ramirez AA, et al (2018) Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sens 10:. https://doi.org/10.3390/rs10101513&lt;/p&gt;

&lt;p&gt;Eraj SU, Uddin MN (2023) Early stage Potato Disease Classification by analyzing Potato Plants using CNN. In: Int. Conf. Next-Gener. Comput., IoT Mach. Learn., NCIM. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Feng J, Hou B, Yu C, et al (2023) Research and Validation of Potato Late Blight Detection Method Based on Deep Learning. Agronomy 13:1659. https://doi.org/10.3390/agronomy13061659&lt;/p&gt;

&lt;p&gt;Gao W, Xiao Z, Bao T (2023) Detection and Identification of Potato-Typical Diseases Based on Multidimensional Fusion Atrous-CNN and Hyperspectral Data. Appl Sci 13:. https://doi.org/10.3390/app13085023&lt;/p&gt;

&lt;p&gt;Ghosh H, Rahat IS, Shaik K, et al (2023) Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks. Endor Trans Scalable Inf Syst 10:. https://doi.org/10.4108/eetsis.3937&lt;/p&gt;

&lt;p&gt;Ghosh S, Rameshan R, Dileep AD (2021) An empirical study on machine learning models for potato leaf disease classification using RGB images. In: ICPRAM - Proc. Int. Conf. Pattern Recognit. Appl. Methods. Science and Technology Publications, Lda, pp 515&amp;ndash;522&lt;/p&gt;

&lt;p&gt;Goyal B, Kumar Pandey A, Kumar R, Gupta M (2023) Disease Detection in Potato Leaves Using an Efficient Deep Learning Model. In: Int. Conf. Data Sci. Netw. Secur., ICDSNS. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2023) A novel deep learning model with the Grey Wolf Optimization algorithm for cotton disease detection. J Univers Comput Sci 29:595&amp;ndash;626. https://doi.org/10.3897/jucs.94183&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2023) Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications 227:120346. https://doi.org/10.1016/j.eswa.2023.120346&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2022) MonkeypoxHybridNet: A hybrid deep convolutional neural network model for monkeypox disease detection. In: International Research in Engineering Sciences. Egitim Publishing, Konya, pp 49&amp;ndash;64&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2022) Demand forecasting and production planning in a factory with time series analysis. In: International Research in Engineering Sciences. Egitim Publishing, Konya, pp 57&amp;ndash;74&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2023) Optimizing and comparison of market chain product distribution problem with different genetic algorithm versions. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology 6:180&amp;ndash;196. https://doi.org/10.47495/okufbed.1117220&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2023) Improved discrete queuing search algorithm for traveling salesman problem. In: International Research in Engineering Sciences. Egitim Publishing, Konya, pp 31&amp;ndash;56&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2024) A new multi-objective hyperparameter optimization algorithm for COVID-19 detection from x-ray images. Soft Computing. https://doi.org/10.1007/s00500-024-09872-z&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2024) Advancements in rice disease detection through convolutional neural networks: A comprehensive review. Heliyon 10:e33328. https://doi.org/10.1016/j.heliyon.2024.e33328&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B (2023) A novel deep neural network model based Xception and genetic algorithm for detection of COVID-19 from X-ray images. Ann Oper Res 328:617&amp;ndash;641. https://doi.org/10.1007/s10479-022-05151-y&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B, Emmerich M, Fan Y (2024) Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows. Applied Artificial Intelligence 38:2325302. https://doi.org/10.1080/08839514.2024.2325302&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B, Kulluk S (2019) Social spider algorithm for training artificial neural networks. International Journal of Business Analytics (IJBAN) 6:32&amp;ndash;49. https://doi.org/10.4018/IJBAN.2019100103&lt;/p&gt;

&lt;p&gt;G&amp;uuml;lmez B, Kulluk S (2023) T&amp;uuml;rkiye&amp;rsquo;de ikinci el ara&amp;ccedil;ların b&amp;uuml;y&amp;uuml;k veri ve makine &amp;ouml;ğrenme teknikleriyle analizi ve fiyat tahmini. GUMMFD 38:2279&amp;ndash;2290. https://doi.org/10.17341/gazimmfd.980840&lt;/p&gt;

&lt;p&gt;Gupta A, Gill R, Srivastava D, Hooda S (2023a) Hybrid CNN &amp;amp; Random Forest Model for Effective Potato Leaf Disease Diagnosis. In: IEEE Int. Conf. Electr., Electron., Commun. Comput., ELEXCOM. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Gupta P, Waghela H, Patel S, et al (2023b) Potato Plant Disease Classification using Convolution Neural Network. In: Proc. Int. Conf. Adv. Comput. Technol. Appl., ICACTA. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Gupta U, Vijh S, Kumar S, et al (2023c) Potato Leaf Disease Detection Using Machine Learning Techniques for Precision Agriculture. In: Proc. IEEE Int. Conf. Image Inf. Process., ICIIP. Institute of Electrical and Electronics Engineers Inc., pp 913&amp;ndash;918&lt;/p&gt;

&lt;p&gt;Gurusamy S, Natarajan B, Bhuvaneswari R, Arvindhan M (2023) Potato plant leaf diseases detection and identification using convolutional neural networks. In: Artifi. Intell., Blockchain, Comput. Secur. - Proc. Int. Conference on Artif. Intell., Blockchain, Comput. Secur. CRC Press/Balkema, pp 160&amp;ndash;165&lt;/p&gt;

&lt;p&gt;Hampson CP (1976) Nutritional value of potatoes. Nutrition Bulletin 3:299&amp;ndash;309. https://doi.org/10.1111/j.1467-3010.1976.tb00800.x&lt;/p&gt;

&lt;p&gt;Hartin J, Bennaton R (2023) Benefits of Plants to Humans and Urban Ecosystems. University of California, Agriculture and Natural Resources&lt;/p&gt;

&lt;p&gt;Hasi JM, Rahman MO (2023) Potato Disease Detection Using Convolutional Neural Network: A Web Based Solution. In: Lect. Notes Inst. Comput. Sci. Soc. Informatics Telecommun. Eng. Springer Science and Business Media Deutschland GmbH, pp 35&amp;ndash;48&lt;/p&gt;

&lt;p&gt;Hassan SM, Jasinski M, Leonowicz Z, et al (2021) Plant disease identification using shallow convolutional neural network. Agronomy 11:. https://doi.org/10.3390/agronomy11122388&lt;/p&gt;

&lt;p&gt;Hussain N, Farooque AA, Schumann AW, et al (2020) Design and development of a smart variable rate sprayer using deep learning. Remote Sens 12:1&amp;ndash;17. https://doi.org/10.3390/rs12244091&lt;/p&gt;

&lt;p&gt;Islam F, Hoq MN, Rahman CM (2019) Application of Transfer Learning to Detect Potato Disease from Leaf Image. In: IEEE Int. Conf. Robot., Autom., Artif.-Intell. Internet-Things, RAAICON. Institute of Electrical and Electronics Engineers Inc., pp 127&amp;ndash;130&lt;/p&gt;

&lt;p&gt;Islam MMd, Islam A, Habib A (2023) Potato late blight disease detection using convolutional neural network. Int J Inf Commun Technol 23:346&amp;ndash;370. https://doi.org/10.1504/IJICT.2023.134828&lt;/p&gt;

&lt;p&gt;Jabbar AN, Koyuncu H (2023) Deep Learning and Grey Wolf Optimization Technique for Plant Disease Detection: A Novel Methodology for Improved Agricultural Health. Trait Signal 40:1961&amp;ndash;1972. https://doi.org/10.18280/ts.400515&lt;/p&gt;

&lt;p&gt;Jafar A, Bibi N, Naqvi RA, et al (2024) Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations. Front Plant Sci 15:. https://doi.org/10.3389/fpls.2024.1356260&lt;/p&gt;

&lt;p&gt;Jahangir R, Sakib T, Baki R, Hossain MM (2023) A Comparative Analysis of Potato Leaf Disease Classification with Big Transfer (BiT) and Vision Transformer (ViT) Models. In: Proc. IEEE Int. Women Eng. (WIE) Conf. Electr. Comput. Eng., WIECON-ECE. Institute of Electrical and Electronics Engineers Inc., pp 58&amp;ndash;63&lt;/p&gt;

&lt;p&gt;Jindal V, Nagpal Y, Kukreja V (2022) CNN Implementation for Severity Levels of Potato Blight Disease. In: Int. Conf. Data Anal. Bus. Ind., ICDABI. Institute of Electrical and Electronics Engineers Inc., pp 438&amp;ndash;443&lt;/p&gt;

&lt;p&gt;Johnson J, Sharma G, Srinivasan S, et al (2021) Enhanced field-based detection of potato blight in complex backgrounds using deep learning. Plant Phenomic 2021:. https://doi.org/10.34133/2021/9835724&lt;/p&gt;

&lt;p&gt;Joseph SG, Ashraf MS, Srivastava AP, et al (2022) CNN-based Early Blight and Late Blight Disease Detection on Potato Leaves. In: Proc. Int. Conf. Technol. Adv. Comput. Sci., ICTACS. Institute of Electrical and Electronics Engineers Inc., pp 923&amp;ndash;928&lt;/p&gt;

&lt;p&gt;Julian A, Vignesh S (2024) Computational Approaches for Identifying Potato Plant Pathogens. In: Proc. - Int. Conf. Comput., Power, Commun. Technol., IC2PCT. Institute of Electrical and Electronics Engineers Inc., pp 408&amp;ndash;412&lt;/p&gt;

&lt;p&gt;Kasani K, Yadla S, Rachamalla S, et al (2023) Potato Crop Disease Prediction using Deep Learning. In: Proc. - IEEE Int. Conf. Commun. Syst. Netw. Technol., CSNT. Institute of Electrical and Electronics Engineers Inc., pp 231&amp;ndash;235&lt;/p&gt;

&lt;p&gt;Khan A, Nawaz U, Ulhaq A, Robinson RW (2020) Real-time plant health assessment via implementing cloud-based scalable transfer learning on AWS DeepLens. PLoS ONE 15:. https://doi.org/10.1371/journal.pone.0243243&lt;/p&gt;

&lt;p&gt;Kiran Pandiri DN, Murugan R, Goel T, et al (2022) POT-Net: solanum tuberosum (Potato) leaves diseases classification using an optimized deep convolutional neural network. Imag Sci J 70:387&amp;ndash;403. https://doi.org/10.1080/13682199.2023.2169988&lt;/p&gt;

&lt;p&gt;Korchagin SA, Gataullin ST, Osipov AV, et al (2021) Development of an optimal algorithm for detecting damaged and diseased potato tubers moving along a conveyor belt using computer vision systems. Agronomy 11:. https://doi.org/10.3390/agronomy11101980&lt;/p&gt;

&lt;p&gt;Krishna KS, Narayana GVS (2022) Early Blight and Late Blight Disease Prediction using CNN for Potato Leaves. In: Int. Conf. Comput. Sci., Eng. Appl., ICCSEA. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Kristiyanti DA, Adilah TM, Shabrina NH, et al (2023) Early Detection of Potato Leaf Pest and Disease Using EfficientNet and ConvNeXt Architecture. In: Proc. Int. Conf. New Media Stud., CONMEDIA. Institute of Electrical and Electronics Engineers Inc., pp 167&amp;ndash;172&lt;/p&gt;

&lt;p&gt;Kukreja V, Baliyan A, Salonki V, Kaushal RK (2021) Potato Blight: Deep Learning Model for Binary and Multi-Classification. In: Proc. Int. Conf. Signal Process. Integr. Networks, SPIN. Institute of Electrical and Electronics Engineers Inc., pp 967&amp;ndash;972&lt;/p&gt;

&lt;p&gt;Kumar A, Patel VK (2023) Classification and identification of disease in potato leaf using hierarchical based deep learning convolutional neural network. Multimedia Tools Appl 82:31101&amp;ndash;31127. https://doi.org/10.1007/s11042-023-14663-z&lt;/p&gt;

&lt;p&gt;Kumar A, Trivedi NK, Tiwari RG (2023a) Disease Identification in Potato Leaves Using a Multi-Tier Deep Learning Model. In: Asian Conf. Innov. Technol., ASIANCON. Institute of Electrical and Electronics Engineers Inc.&lt;/p&gt;

&lt;p&gt;Kumar N, Kumar P, Sharma P, Katarya R (2023b) Exploring Machine Learning and Deep Learning Techniques for Potato Disease Detection. In: Smart Innov. Syst. Technol. Springer Science and Business Media Deutschland GmbH, pp 459&amp;ndash;467&lt;/p&gt;

&lt;p&gt;Kumar R, Chug A, Singh AP (2023c) AN EFFICIENT PLANT LEAF DISEASE DETECTION MODEL USING SHALLOW-CONVNET. Appl Ecol Environ Res 21:3193&amp;ndash;3211. https://doi.org/10.15666/aeer/2104_31933211&lt;/p&gt;

&lt;p&gt;Lanjewar MG, Morajkar P, P P (2024) Modified transfer learning frameworks to identify potato leaf diseases. Multimedia Tools Appl 83:50401&amp;ndash;50423. https://doi.org/10.1007/s11042-023-17610-0&lt;/p&gt;

&lt;p&gt;Lee T-Y, Lin I-A, Yu J-Y, et al (2021) High Efficiency Disease Detection for Potato Leaf with Convolutional Neural Network. SN COMPUT SCI 2:. https://doi.org/10.1007/s42979-021-00691-9&lt;/p&gt;

&lt;p&gt;Li X, Zhou Y, Liu J, et al (2022) The Detection Method of Potato Foliage Diseases in Complex Background Based on Instance Segmentation and Semantic Segmentation. Front Plant Sci 13:. https://doi.org/10.3389/fpls.2022.899754&lt;/p&gt;

&lt;p&gt;Li X-T, Zhang F, Feng J (2024) Convolutional Neural Network Combined With Improved Spectral Processing Method for Potato Disease Detection. Guang Pu Xue Yu Guang Pu Fen Xi 44:215&amp;ndash;224. https://doi.org/10.3964/j.issn.1000-0593(2024)01-0215-10&lt;/p&gt;

&lt;p&gt;Liu F, Xiao Z (2020) Disease Spots Identification of Potato Leaves in Hyperspectral Based on Locally Adaptive 1D-CNN. In: Proc. IEEE Int. Conf. Artif. Intell. Comput. Appl., ICAICA. Institute of Electrical and Electronics Engineers Inc., pp 355&amp;ndash;358&lt;/p&gt;

&lt;p&gt;Lozada-Portilla WA, Suarez-Bar&amp;oacute;n MJ, Avenda&amp;ntilde;o-Fern&amp;aacute;ndez E (2021) Application of convolutional neural networks for detection of the late blight Phytophthora infestans in potato Solanum tuberosum. Revista Actual Divulgacion Cient 24:. https://doi.org/10.31910/rudca.v24.n2.2021.1917&lt;/p&gt;

&lt;p&gt;Luong HH (2024) Improving Potato Diseases Classification Based on Custom ConvNeXtSmall and Combine with the Explanation Model. Intl J Adv&amp;nbsp; Comput Sci Appl 15:1206&amp;ndash;1219. https://doi.org/10.14569/IJACSA.2024.01504121&lt;/p&gt;

&lt;p&gt;Manzoor S, Manzoor SH, Islam SU, Boudjadar J (2024) AgriScanNet-18: A Robust Multilayer CNN for Identification of Potato Plant Diseases. In: Lect. Notes Networks Syst. Springer Science and Business Media Deutschland GmbH, pp 291&amp;ndash;308&lt;/p&gt;

&lt;p&gt;Marino S, Beauseroy P, Smolarz A (2019) Weakly-supervised learning approach for potato defects segmentation. Engineering Applications of Artificial Intelligence 85:337&amp;ndash;346. https://doi.org/10.1016/j.engappai</description>
  </descriptions>
</resource>
312
115
görüntülenme
indirilme
Görüntülenme 312
İndirme 115
Veri hacmi 130.2 MB
Tekil görüntülenme 270
Tekil indirme 109

Alıntı yap