Konferans bildirisi Açık Erişim
Zariç, Özgür Eren;
Çelekli, Abuzer
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="y">Conference website</subfield>
<subfield code="u">https://ecology2024.sinop.edu.tr/home/</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">Artificial wetlands</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">carbon sequestration</subfield>
</datafield>
<datafield tag="653" ind1=" " ind2=" ">
<subfield code="a">climate change mitigation</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:aperta.ulakbim.gov.tr:273740</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Artificial wetlands have emerged as significant ecological assets in urban and regional frameworks, contributing to sustainability goals and climate mitigation strategies. These engineered ecosystems mirror the carbon sequestration capabilities of their natural counterparts by capturing and storing atmospheric carbon dioxide (CO2, thereby serving as vital negative emission technologies in the fight against global warming. The process leverages anaerobic conditions to protect existing soil carbon while concurrently facilitating atmospheric CO2 sequestration through vegetation. Despite the potential release of greenhouse gases such as methane (CH4 due to anaerobic conditions, certain wetlands demonstrate a net greenhouse gas sink capability, where the carbon uptake substantially offsets climate-forcing emissions. This functionality underscores the importance of understanding carbon uptake drivers to optimize wetland management as a natural climate solution. Moreover, integrating artificial wetlands into urban areas fosters community resilience, reconnecting people with their local ecosystems and enabling collaborative governance for environmental management. Through place-based approaches, artificial wetlands address carbon-zero ambitions and enhance local biodiversity, providing many ecosystem services. These systems&#39; rehabilitation and sustained management are pivotal in preserving their role as carbon absorbers and fostering biodiversity amidst continuous climate change and urban development. In case studies, it has been observed that restored swamp areas rapidly turn into net CO2 sinks after restoration. Site-specific factors such as land cover and vegetation development are essential in annual carbon budgets. Studies show that the impacts of previous land uses and hydrological changes are mitigated, highlighting the potential of wetland restoration to provide effective long-term carbon sequestration. In conclusion, artificial wetlands are promising for mitigating climate change impacts through carbon sequestration and biodiversity enhancement. Their success depends on careful design, management, and integration into broader sustainability and climate adaptation frameworks. Future research should focus on optimizing wetland restoration practices to maximize their ecological benefits and explore their scalability.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">conferencepaper</subfield>
</datafield>
<datafield tag="711" ind1=" " ind2=" ">
<subfield code="g">Ecology 2024</subfield>
<subfield code="a">11th International Ecology Symposium</subfield>
<subfield code="d">29 May - 1 June 2024</subfield>
<subfield code="c">Sinop, Turkey</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution-NonCommercial</subfield>
<subfield code="u">https://creativecommons.org/licenses/by-nc/4.0/</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Alikhani, S., Nummi, P., & Ojala, A. (2021). Urban wetlands: A review on ecological and cultural values. Water (Switzerland), 13(22), 3301.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">An, S., & Verhoeven, J. T. A. (2019). Wetland Functions and Ecosystem Services: Implications for Wetland Restoration and Wise Use. Springer.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Babin, A., Vaneeckhaute, C., & Iliuta, M. C. (2021). Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy, 146, 105968.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Bernal, B., & Mitsch, W. J. (2012). Comparing carbon sequestration in temperate freshwater wetland communities. Global Change Biology, 18(5), 1636–1647.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. (2023a). Utilization of Herbaria in Ecological Studies: Biodiversity and Landscape Monitoring. Herbarium Turcicum. Advance Online Publication. https://doi.org/10.26650/ht.2023.1345916</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. E. (2023b). From Emissions to Environmental Impact: Understanding the Carbon Footprint. International Journal of Environment and Geoinformatics, 10(4), 146–156. https://doi.org/10.30897/ijegeo.1383311</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. E. (2023c). Hydrobiology and ecology in the context of climate change: the future of aquatic ecosystems. 6th International Eurasian Conference on Biological and Chemical Sciences, 539–545.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. E. (2024a). Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis. Life Sciences in Space Research, 41, 181–190. https://doi.org/10.1016/j.lssr.2024.03.001</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. E. (2024b). Plasma-Enhanced Microalgal Cultivation: A Sustainable Approach for Biofuel and Biomass Production. In A. Shahzad & M. He (Eds.), Emerging Applications of Plasma Science in Allied Technologies (p. 300). IGI Global. https://doi.org/10.4018/979-8-3693-0904-9</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Çelekli, A., & Zariç, Ö. E. (2024c). Rising Tide of Ocean Acidification. Environmental Research and Technology. Advance Online Publication. https://doi.org/10.35208/ert.1407588</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Clifford, C. C., & Heffernan, J. B. (2018). Artificial aquatic ecosystems. Water (Switzerland), 10(8), 1096</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Collier, P. A. (2012). Wetland habitats: a practical guide to restoration and management. In Ecological Management & Restoration (Vol. 13, Issue 3). Csıro Publıshıng.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Erans, M., Sanz-Pérez, E. S., Hanak, D. P., Clulow, Z., Reiner, D. M., & Mutch, G. A. (2022). Direct air capture: process technology, techno-economic and socio-political challenges. Energy & Environmental Science, 15(4), 1360–1405.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Erwin, K. L. (2009). Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 17(1), 71–84.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Fleming, J. R. (2009). The Great Warming: Climate Change and the Rise and Fall of Civilizations. In Physics Today (Vol. 62, Issue 3). Bloomsbury Publishing USA.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Haikola, S., Anshelm, J., & Hansson, A. (2021). Limits to climate action - Narratives of bioenergy with carbon capture and storage. Political Geography, 88, 102416.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Himalaya, B., S. (2022). Assessing global temperature anomaly using NASA's space studies — Part I | by Himalaya Bir Shrestha | Towards Data Science.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Huang, F., Huang, Y., Jia, J., Li, Z., Xu, J., Ni, S., & Xiao, Y. (2022). Research and engineering application of bypass combined artificial wetlands system to improve river water quality. Journal of Water Process Engineering, 48, 102905.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Legg, S. (2021). Technical Summary. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis., pp. 44–45.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Lolu, A. J., Ahluwalia, A. S., Sidhu, M. C., Reshi, Z. A., & Mandotra, S. K. (2020). Carbon Sequestration and Storage by Wetlands: Implications in the Climate Change Scenario. Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment, 45–58. https://doi.org/10.1007/978-981-13-7665-8_4</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Mitra, S., Wassmann, R., & Vlek, P. L. G. (2005). An appraisal of global wetland area and its organic carbon stock. Current Science, 88(1), 25–35.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Nyman, J. A. (2011). Ecological Functions of Wetlands. Wetlands, pp. 115–128.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Rogerson, R. J., Horgan, D., & Roberts, J. J. (2021). Integrating artificial urban wetlands into communities: a pathway to carbon zero? Frontiers in Built Environment, 7. https://doi.org/10.3389/fbuil.2021.777383</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Salimi, S., Almuktar, S. A. A. A. N., & Scholz, M. (2021). Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. Journal of Environmental Management, 286, 112160.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Semeraro, T., Giannuzzi, C., Beccarisi, L., Aretano, R., De Marco, A., Pasimeni, M. R., Zurlini, G., & Petrosillo, I. (2015). A constructed treatment wetland is an opportunity to enhance biodiversity and ecosystem services. Ecological Engineering, 82, 517–526. https://doi.org/10.1016/j.ecoleng.2015.05.042</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Srivastava, L., Echeverri, L. G., Schlegel, F., Denis, M., Deubelli, T. M., Havlik, P., Kaplan, D., Mechler, R., Paulavets, K., Rovenskaya, E., & others. (2021). Transformations within reach: Pathways to a sustainable and resilient world-Synthesis Report. IIASA Report.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Stefanakis, A. I. (2019). The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability (Switzerland), 11(24), 6981.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., Olefeldt, D., Rinne, J., Saarnio, S., Shurpali, N., Tuittila, E. S., Waddington, J. M., White, J. R., Wickland, K. P., & Wilmking, M. (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20(7), 2183–2197.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Valach, A. C., Kasak, K., Hemes, K. S., Anthony, T. L., Dronova, I., Taddeo, S., Silver, W. L., Szutu, D., Verfaillie, J., & Baldocchi, D. D. (2021). Productive wetlands restored for carbon sequestration quickly become net CO2sinks with site-level factors driving uptake variability. PLoS ONE, 16(3 March), e0248398.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Were, D., Kansiime, F., Fetahi, T., Cooper, A., & Jjuuko, C. (2019). Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Systems and Environment, 3(2), 327–340.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Wiskerke, J. S. C. (2020). Assessing the environmental impact of agriculture. 6th International Eurasian Conference on Biological and Chemical Sciences, 0–320.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Yuan, X., Qian, S., & Li, B. (2023). Carbon neutrality: A review. Journal of Computing and Information Science in Engineering, p. 23, 60801–60809.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Zariç, Ö. E., & Çelekli, A. (2023). Fishing in Kars-Ardahan Lake Çıldır: Ecological Interactions and Conservation Strategies. 7. Ulusal Alabalık Kongresi, 14.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Zariç, Ö. E., Çelekli, A., & Yaygır, S. (2024). Lakes of Turkey: Comprehensive Review of Lake Çıldır. Aquatic Sciences and Engineering, 39(1), 54–63. https://doi.org/10.26650/ASE20241353730</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Zedler, J., & Leach, M. (1998). Managing urban wetlands for multiple use: research, restoration, and recreation. Urban Ecosystems, 2, 189–204.</subfield>
</datafield>
<datafield tag="999" ind1="C" ind2="5">
<subfield code="x">Zhang, C., Wen, L., Wang, Y., Liu, C., Zhou, Y., & Lei, G. (2020). Can constructed wetlands be wildlife refuges? A review of their potential biodiversity conservation value. Sustainability (Switzerland), 12(4), 1442.</subfield>
</datafield>
<datafield tag="773" ind1=" " ind2=" ">
<subfield code="i">isVersionOf</subfield>
<subfield code="a">10.48623/aperta.273739</subfield>
<subfield code="n">doi</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0001-5293-871X</subfield>
<subfield code="a">Zariç, Özgür Eren</subfield>
<subfield code="u">Gaziantep Üniversitesi</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:411a83042935873773f8b2a58394745e</subfield>
<subfield code="s">560592</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/273740/files/Artificial Wetlands in the Fight Against Global Warming Reducing .pdf</subfield>
</datafield>
<controlfield tag="005">20240718133137.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-07-18</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.48623/aperta.273740</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Artificial Wetlands in the Fight Against Global Warming: Reducing Carbon Footprint and Enhancing Biodiversity</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-2448-4957</subfield>
<subfield code="a">Çelekli, Abuzer</subfield>
<subfield code="u">Gaziantep Üniversitesi</subfield>
</datafield>
<controlfield tag="001">273740</controlfield>
</record>
| Tüm sürümler | Bu sürüm | |
|---|---|---|
| Görüntülenme | 254 | 270 |
| İndirme | 230 | 230 |
| Veri hacmi | 128.9 MB | 128.9 MB |
| Tekil görüntülenme | 229 | 245 |
| Tekil indirme | 197 | 197 |