Konferans bildirisi Açık Erişim

Re-exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification

Kevseroğlu, Özlem; Kurban, Rifat


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3660853.3660913</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <controlfield tag="005">20240624200844.0</controlfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-06-24</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Re-exploring the Kayseri Culture Route by Using Deep Learning for Cultural Heritage Image Classification</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Abdullah Gül Üniversitesi</subfield>
    <subfield code="0">(orcid)0000-0003-1828-2256</subfield>
    <subfield code="a">Kevseroğlu, Özlem</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Abdullah Gül Üniversitesi</subfield>
    <subfield code="0">(orcid)0000-0002-0277-2210</subfield>
    <subfield code="a">Kurban, Rifat</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="c">İstanbul, Türkiye</subfield>
    <subfield code="g">AICCONF '24</subfield>
    <subfield code="d">25 Mayıs 2024</subfield>
    <subfield code="a">Proceedings of the Cognitive Models and Artificial Intelligence Conference</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <controlfield tag="001">273713</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:273713</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">conferencepaper</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/273713/files/3660853.3660913.pdf</subfield>
    <subfield code="z">md5:64574fdc8e66e53b8a4e9c4f40d37b02</subfield>
    <subfield code="s">2355747</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional neural networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SqueezeNet</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cultural Heritage</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Image Classification</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The categorization of images captured during the documentation of architectural structures is a crucial aspect of preserving cultural heritage in digital form. Dealing with a large volume of images makes this categorization process laborious and time-consuming, often leading to errors. Introducing automatic techniques to aid in sorting would streamline this process, enhancing the efficiency of digital documentation. Proper classification of these images facilitates improved organization and more effective searches using specific terms, thereby aiding in the analysis and interpretation of the heritage asset. This study primarily focuses on applying deep learning techniques, specifically SqueezeNet convolutional neural networks (CNNs), for classifying images of architectural heritage. The effectiveness of training these networks from scratch versus fine-tuning pre-existing models is examined. In this study, we concentrate on identifying significant elements within images of buildings with architectural heritage significance of Kayseri Culture Route. Since no suitable datasets for network training were found, a new dataset was created. Transfer learning enables the use of pre-trained convolutional neural networks to specific image classification tasks. In the experiments, 99.8% of classification accuracy have been achieved by using SqueezeNet, suggesting that the implementation of the technique can substantially enhance the digital documentation of architectural heritage.&lt;/p&gt;</subfield>
  </datafield>
</record>
123
77
görüntülenme
indirilme
Görüntülenme 123
İndirme 77
Veri hacmi 181.4 MB
Tekil görüntülenme 110
Tekil indirme 70

Alıntı yap