Dergi makalesi Açık Erişim

Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques

Kurt, Burcin; Gurlek, Beril; Keskin, Seda; Ozdemir, Sinem; Karadeniz, Ozlem; Kirkbir, Ilknur Bucan; Kurt, Tugba; Unsal, Serbülent; Kart, Cavit; Baki, Neslihan; Turhan, Kemal


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 273606, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Kurt, Burcin"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Recep Tayyip Erdogan Univ, Fac Med, Dept Gynecol & Obstet, Rize, Turkiye", 
      "name": "Gurlek, Beril"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Ordu Univ, Fac Med, Dept Gynecol & Obstet, Ordu, Turkiye", 
      "name": "Keskin, Seda"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Ozdemir, Sinem"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Karadeniz, Ozlem"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Kirkbir, Ilknur Bucan"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Kurt, Tugba"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Unsal, Serb\u00fclent"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Gynecol & Obstet, Trabzon, Turkiye", 
      "name": "Kart, Cavit"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Baki, Neslihan"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Karadeniz Tech Univ, Fac Med, Dept Biostat & Med Informat, Trabzon, Turkiye", 
      "name": "Turhan, Kemal"
    }
  ], 
  "datePublished": "2023-01-01", 
  "description": "<p>The study aimed to develop a clinical diagnosis system to identify patients in the GD risk group and reduce unnecessary oral glucose tolerance test (OGTT) applications for pregnant women who are not in the GD risk group using deep learning algorithms. With this aim, a prospective study was designed and the data was taken from 489 patients between the years 2019 and 2021, and informed consent was obtained. The clinical decision support system for the diagnosis of GD was developed using the generated dataset with deep learning algorithms and Bayesian optimization. As a result, a novel successful decision support model was developed using RNN-LSTM with Bayesian optimization that gave 95% sensitivity and 99% specificity on the dataset for the diagnosis of patients in the GD risk group by obtaining 98% AUC (95% CI (0.95-1.00) and p &lt; 0.001). Thus, with the clinical diagnosis system developed to assist physicians, it is planned to save both cost and time, and reduce possible adverse effects by preventing unnecessary OGTT for patients who are not in the GD risk group.</p>", 
  "headline": "Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques", 
  "identifier": 273606, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques", 
  "url": "https://aperta.ulakbim.gov.tr/record/273606"
}
74
4
görüntülenme
indirilme
Görüntülenme 74
İndirme 4
Veri hacmi 1.3 kB
Tekil görüntülenme 70
Tekil indirme 4

Alıntı yap