Dergi makalesi Açık Erişim

Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids

Isik, Melis; Okesola, Babatunde O.; Eylem, Cemil Can; Kocak, Engin; Nemutlu, Emirhan; D'Este, Matteo; Mata, Alvaro; Derkus, Burak


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Okesola, Babatunde O.</subfield>
    <subfield code="u">Univ Nottingham, Sch Life Sci, Fac Med &amp; Hlth Sci, Nottingham NG7 2UH, England</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Eylem, Cemil Can</subfield>
    <subfield code="u">Hacettepe Univ, Fac Pharm, Analyt Chem Div, TR-06230 Ankara, Turkiye</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Kocak, Engin</subfield>
    <subfield code="u">Hlth Sci Univ, Fac Gulhane Pharm, Div Analyt Chem, TR-06018 Ankara, Turkiye</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Nemutlu, Emirhan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">D'Este, Matteo</subfield>
    <subfield code="u">AO Res Inst Davos, Clavadelerstr 8,Davos Pl, CH-7270 Davos, Switzerland</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Mata, Alvaro</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Derkus, Burak</subfield>
    <subfield code="u">Ankara Univ, Fac Sci, Dept Chem, Stem Cell Res Lab, TR-06560 Ankara, Turkiye</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">16</subfield>
    <subfield code="p">ACTA BIOMATERIALIA</subfield>
    <subfield code="v">171</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Creative Commons Attribution</subfield>
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.actbio.2023.09.040</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Isik, Melis</subfield>
    <subfield code="u">Ankara Univ, Fac Sci, Dept Chem, Stem Cell Res Lab, TR-06560 Ankara, Turkiye</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:271188</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-01-01</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/271188/files/bib-61701a11-86c8-4258-9aee-5022670c2635.txt</subfield>
    <subfield code="z">md5:ecdcb7a28c7f79737510675c369a4e2b</subfield>
    <subfield code="s">299</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <controlfield tag="005">20240607163027.0</controlfield>
  <controlfield tag="001">271188</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Organoids are an emerging technology with great potential in human disease modelling, drug devel-opment, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture sys-tems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropri-ate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactiv-ity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolec-ular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM -like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels contain-ing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. Statement of significance Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic ma-trices are chemically defined and animal-free compared to current gold standard matrices such as Ma-trigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids. (c) 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.&lt;/p&gt;</subfield>
  </datafield>
</record>
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap