Dergi makalesi Açık Erişim

Autoencoder-Based Enhanced Orthogonal Time Frequency Space Modulation

Tek, Yusuf İslam; Doğukan, Ali Tuğberk; Başar, Ertuğrul


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Autoencoder-Based Enhanced Orthogonal Time Frequency Space Modulation</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.48623/aperta.263591</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <controlfield tag="001">263591</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Orthogonal time frequency space (OTFS) is a novel waveform that provides a superior performance in doublydispersive channels. Since it spreads information symbols across the entire delay-Doppler plane, OTFS can achieve full diversity. However, reliability still needs to be improved in OTFS systems to meet the stringent demands of future communication systems. To address this issue, we propose an autoencoder (AE)-based enhanced OTFS (AEE-OTFS) modulation scheme. By training an AE under an additive white Gaussian noise (AWGN) channel, a feasible mapper and demapper are learned to improve the error performance and decrease the detection complexity of the OTFS system. The learned mapper is used to map incoming bits into high-dimensional symbols while the learned demapper recovers the information bits in the delay-Doppler domain. Additionally, we derive a theoretical upper bound for the frame error rate (FER). Simulation results confirm that AEE-OTFS outperforms conventional OTFS in terms of FER under perfect and imperfect channel conditions. AEE-OTFS also enjoys low decoding complexity in addition to its superior error performance.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Koç University</subfield>
    <subfield code="a">Doğukan, Ali Tuğberk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Koç University</subfield>
    <subfield code="a">Başar, Ertuğrul</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Koç University</subfield>
    <subfield code="a">Tek, Yusuf İslam</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2023-08-22</subfield>
  </datafield>
  <controlfield tag="005">20240212103246.0</controlfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="a">10.48623/aperta.263590</subfield>
    <subfield code="i">isVersionOf</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:263591</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:fe93ce1e406399cf6de4e6d8790028c8</subfield>
    <subfield code="s">2109833</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/263591/files/Autoencoder-Based_Enhanced_Orthogonal_Time_Frequency_Space_Modulation.pdf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by-sa</subfield>
    <subfield code="a">Creative Commons Attribution Share-Alike</subfield>
  </datafield>
</record>
92
129
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 9292
İndirme 129129
Veri hacmi 272.2 MB272.2 MB
Tekil görüntülenme 8686
Tekil indirme 119119

Alıntı yap