Veri seti Açık Erişim

StemnesScoRe: An R package to estimate the stemness of glioma cancer cells at single- cell resolution

   Koçhan, Necla; Oktay, Yavuz; Karakülah, Gökhan

Background/aim: Glioblastoma is the most heterogeneous and the most difficult-to-treat type of brain tumor and one of the deadliest among all cancers. High plasticity of glioma cancer stem cells and the resistance they develop against multiple modalities of therapy, along with high heterogeneity, are the main challenges faced during treatment of glioblastoma. Therefore, a better understanding of the stemness characteristics of glioblastoma cells is needed. With the development of various single-cell technologies and increasing applications of machine learning, indices based on transcriptomic and/or epigenomic data have been developed to quantitatively measure cellular states and stemness. In this study, we aimed to develop a glioma-specific stemness score model using scATAC-seq data for the first time.

Materials and methods: We first applied three powerful machine-learning algorithms, i.e., random forest, gradient boosting, and extreme gradient boosting to glioblastoma scRNA-seq data to discover the most important genes associated with cellular states. We then identified promoter and enhancer regions associated with these genes. After downloading the scATAC-seq peaks and their read counts for each patient, we identified the overlapping regions between the single-cell peaks and the peaks of genes obtained through machine-learning algorithms. Then, we calculated read counts that were mapped to these overlapping regions. We finally developed a model capable of estimating the stemness score for each glioma cell using overlapping regions and the importance of genes predictive of glioblastoma cellular states. We also created an R package, accessible to all researchers, regardless of their coding proficiency.

Results: Our results showed that mesenchymal-like stem cells display the highest stemness scores compared to neural-progenitor, oligodendrocyte-progenitor, and astrocyte-like cells.

Conclusion: We conclude that scATAC-seq can be used to assess heterogeneity in glioblastoma and identify cells with high stemness characteristics. The package is publicly available at https://github.com/Necla/StemnesScoRe and includes documentation with an implementation of a real-data experiment.

Dosyalar (931.6 kB)
Dosya adı Boyutu
Supplementary File 1.xlsx
md5:9c3995885e95d54af446a61a4161aa7e
252.4 kB İndir
Supplementary File 2.xlsx
md5:3fef05106bd95ef219bd19b53741a60b
336.3 kB İndir
Supplementary File 3.xlsx
md5:273b1e9ad1fde52cbe3024bcbdf08688
333.0 kB İndir
Supplementary File 4.xlsx
md5:97cad20133790e7b1f16f3aca37a129f
10.0 kB İndir
235
55
görüntülenme
indirilme
Tüm sürümler Bu sürüm
Görüntülenme 235235
İndirme 5555
Veri hacmi 12.3 MB12.3 MB
Tekil görüntülenme 215215
Tekil indirme 3737

Alıntı yap