Ön baskı Açık Erişim

Dissipative learning of a quantum classifier

Korkmaz, Ufuk; Türkpençe, Deniz


JSON

{
  "conceptrecid": "263304", 
  "created": "2023-11-29T09:01:25.154994+00:00", 
  "doi": "10.48550/arXiv.2307.12293", 
  "files": [
    {
      "bucket": "0292276d-4de9-48d2-b1d1-c339d4357f55", 
      "checksum": "md5:c22d3b3b78c7cb74d2fb930fabfda13c", 
      "key": "Dissipative learning of a quantum classifier.pdf", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/0292276d-4de9-48d2-b1d1-c339d4357f55/Dissipative%20learning%20of%20a%20quantum%20classifier.pdf"
      }, 
      "size": 486376, 
      "type": "pdf"
    }
  ], 
  "id": 263305, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.48550/arXiv.2307.12293.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/0292276d-4de9-48d2-b1d1-c339d4357f55", 
    "doi": "https://doi.org/10.48550/arXiv.2307.12293", 
    "html": "https://aperta.ulakbim.gov.tr/record/263305", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/263305", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/263305"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "alternate_identifiers": [
      {
        "identifier": "10.1007/s12043-023-02653-7", 
        "scheme": "doi"
      }
    ], 
    "creators": [
      {
        "affiliation": "\u0130stanbul Teknik \u00dcniversitesi", 
        "name": "Korkmaz, Ufuk", 
        "orcid": "0000-0001-5836-5262"
      }, 
      {
        "affiliation": "\u0130stanbul Teknik \u00dcniversitesi", 
        "name": "T\u00fcrkpen\u00e7e, Deniz", 
        "orcid": "0000-0002-5182-374X"
      }
    ], 
    "description": "<p>The expectation that quantum computation might bring performance advantages in machine learning algorithms motivates the work on the quantum versions of artificial neural networks. In this study, we analyze the learning dynamics of a quantum classifier model that works as an open quantum system which is an alternative to the standard quantum circuit model. According to the obtained results, the model can be successfully trained with a gradient descent (GD) based algorithm. The fact that these optimization processes have been obtained with continuous dynamics, shows promise for the development of a differentiable activation function for the classifier model.</p>", 
    "doi": "10.48550/arXiv.2307.12293", 
    "has_grant": true, 
    "journal": {
      "issue": "165", 
      "pages": "1-8", 
      "title": "Pramana - J Phys", 
      "volume": "97"
    }, 
    "keywords": [
      "Collision model", 
      "Information reservoir", 
      "quantum learning", 
      "cost function", 
      "training"
    ], 
    "license": {
      "id": "cc-by-sa"
    }, 
    "publication_date": "2023-07-23", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "263305"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "263304"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "preprint", 
      "title": "\u00d6n bask\u0131", 
      "type": "publication"
    }, 
    "science_branches": [
      "Temel Bilimler > Fizik", 
      "Teknik Bilimler > Bilgisayar Bilimleri > Donan\u0131m > Kuantum Hesaplama"
    ], 
    "title": "Dissipative learning of a quantum classifier", 
    "tubitak_grants": [
      {
        "program": "3501", 
        "project_number": "120F353", 
        "workgroup": "MFAG"
      }
    ]
  }, 
  "owners": [
    1569
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 51.0, 
    "unique_downloads": 41.0, 
    "unique_views": 41.0, 
    "version_downloads": 51.0, 
    "version_unique_downloads": 41.0, 
    "version_unique_views": 41.0, 
    "version_views": 47.0, 
    "version_volume": 24805176.0, 
    "views": 47.0, 
    "volume": 24805176.0
  }, 
  "updated": "2023-11-29T09:01:25.248580+00:00"
}
47
51
görüntülenme
indirilme
Görüntülenme 47
İndirme 51
Veri hacmi 24.8 MB
Tekil görüntülenme 41
Tekil indirme 41

Alıntı yap