Kitap bölümü Açık Erişim

Spatial Prediction and Digital Mapping of Soil Texture Classes in a Floodplain Using Multinomial Logistic Regression

Kaya, Fuat; Başayiğit, Levent


JSON

{
  "conceptrecid": "262960", 
  "created": "2023-08-13T15:18:46.884357+00:00", 
  "doi": "10.1007/978-3-030-85577-2_55", 
  "files": [
    {
      "bucket": "a7ac5bb5-84c7-4426-9074-d7ffb823fd3a", 
      "checksum": "md5:4b42450c77bc806e27527ce837ce11f6", 
      "key": "FK_978-3-030-85577-2.pdf", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/a7ac5bb5-84c7-4426-9074-d7ffb823fd3a/FK_978-3-030-85577-2.pdf"
      }, 
      "size": 15838563, 
      "type": "pdf"
    }
  ], 
  "id": 262961, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1007/978-3-030-85577-2_55.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/a7ac5bb5-84c7-4426-9074-d7ffb823fd3a", 
    "doi": "https://doi.org/10.1007/978-3-030-85577-2_55", 
    "html": "https://aperta.ulakbim.gov.tr/record/262961", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/262961", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/262961"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "creators": [
      {
        "affiliation": "Isparta Uygulamal\u0131 Bilimler \u00dcniversitesi", 
        "name": "Kaya, Fuat"
      }, 
      {
        "affiliation": "Isparta Uygulamal\u0131 Bilimler \u00dcniversitesi", 
        "name": "Ba\u015fayi\u011fit, Levent"
      }
    ], 
    "description": "<p>The spatial distribution of physical soil properties is an important requirement in practice as basic input data. Most effective of these properties is soil texture that governs water holding capacity, nutrient availability, and root development. Detailed information on soil texture variability in lateral dimension is crucial for proper crop and land management and environmental studies. Soil texture classes are determined in the soil survey. It may be consist of two or more texture classes for each polygon according to soil mapping units. There is a spatial discrepancy due to variability in soil texture within the mapping polygon. Digital soil mapping (DSM) offers major innovations in removing some of the inconsistencies in traditional soil mapping. DSM methodology can integrate the various raster-based spatial environmental data that field-based soil morphology, soil analyses, and effects of soil formation factors. In this study, the potential of environmental variables generated from digital data to predict soil texture classes were investigated. Curvature parameters indicating the shape of the slope were determined as the most important predictive variables in a flood plain. Overall accuracy was calculated as 63.9% and 47.60% for the training set and the test set, respectively. Digital soil map can be used effectively by farmers in the management of crops in this plain.</p>", 
    "doi": "10.1007/978-3-030-85577-2_55", 
    "has_grant": false, 
    "imprint": {
      "isbn": "978-3-030-85576-5", 
      "place": "Cham", 
      "publisher": "Springer"
    }, 
    "keywords": [
      "Digital soil mapping", 
      "Machine learning algorithms", 
      "Soil texture class", 
      "Spatial predictive modelling"
    ], 
    "language": "eng", 
    "license": {
      "id": "cc-by-sa"
    }, 
    "part_of": {
      "pages": "463-473", 
      "title": "Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. INFUS 2021. Lecture Notes in Networks and Systems"
    }, 
    "publication_date": "2021-08-24", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "262961"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "262960"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "section", 
      "title": "Kitap b\u00f6l\u00fcm\u00fc", 
      "type": "publication"
    }, 
    "science_branches": [
      "Tar\u0131msal Bilimler > Ziraat > Toprak ve Bitki Besleme > Toprak Bilgi Sistemleri", 
      "Tar\u0131msal Bilimler > Ziraat > Toprak ve Bitki Besleme > Toprak Bilgi Sistemleri > Co\u011frafi Bilgi Sistemleri ve Uzaktan Alg\u0131lama", 
      "Tar\u0131msal Bilimler > Ziraat > Toprak ve Bitki Besleme > Toprak Bilgi Sistemleri > Hassas Tar\u0131m Uygulamalar\u0131", 
      "Tar\u0131msal Bilimler > Ziraat > Toprak ve Bitki Besleme > Toprak Et\u00fct ve Haritalama"
    ], 
    "title": "Spatial Prediction and Digital Mapping of Soil Texture Classes in a Floodplain Using Multinomial Logistic Regression"
  }, 
  "owners": [
    1214
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 74.0, 
    "unique_downloads": 73.0, 
    "unique_views": 54.0, 
    "version_downloads": 74.0, 
    "version_unique_downloads": 73.0, 
    "version_unique_views": 51.0, 
    "version_views": 58.0, 
    "version_volume": 1172053662.0, 
    "views": 62.0, 
    "volume": 1172053662.0
  }, 
  "updated": "2023-08-13T15:18:46.934747+00:00"
}
62
74
görüntülenme
indirilme
Görüntülenme 62
İndirme 74
Veri hacmi 1.2 GB
Tekil görüntülenme 54
Tekil indirme 73

Alıntı yap