Dergi makalesi Açık Erişim

Numerical Analysis of CO2-to-DME Conversion in a Membrane Microchannel Reactor

Koybasi, H. Hasan; Avci, Ahmet K.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/262343</identifier>
  <creators>
    <creator>
      <creatorName>Koybasi, H. Hasan</creatorName>
      <givenName>H. Hasan</givenName>
      <familyName>Koybasi</familyName>
      <affiliation>Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Avci, Ahmet K.</creatorName>
      <givenName>Ahmet K.</givenName>
      <familyName>Avci</familyName>
      <affiliation>Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Numerical Analysis Of Co2-To-Dme Conversion In A Membrane Microchannel Reactor</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2022</publicationYear>
  <dates>
    <date dateType="Issued">2022-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/262343</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1021/acs.iecr.2c01764</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Direct DME synthesis via CO2 hydrogenation in a membrane-integrated microchannel reactor is modeled. The proposed reactor comprises rectangular permeate and reaction channels separated by layers of sodalite membranes, permitting only H2O and H-2 transport. Reaction channels, dosed with CO2 and H-2, are washcoated with a physical mixture of methanol synthesis (Cu-ZnO/Al2O3 (CZA)) and dehydration (HZSM-5) catalysts. Pure H-2-fed permeate channels host the steam transported from reaction channels. The mathematical model of the isothermal, steady-state reactor involves conservation equations in catalyst and fluid phases, catalytic reactions, and membrane separation. The model is successfully benchmarked against literature-based experimental data. Differences between isothermal and non-isothermal models remain negligible. At 543 K, 50 bar, and H-2/CO2 = 3, cross-membrane H2O and H-2 transport increases membraneless CO2 conversion and DME yield values by more than 2-fold, i.e., up to similar to 73 and similar to 35%, respectively. Counter-current flow configuration offers more H2O separation than the co-current one. The sweep-to-reactive stream inlet velocity ratio affects cross-membrane mass transfer significantly. Reactor performance is positively correlated with the CZA/HZSM-5 mass ratio. A similar to 7 m(3)-sized reactor can transform similar to 1 x 10(3) tons/year of CO2 into 2.76 x 10(2) tons/year of DME.</description>
  </descriptions>
</resource>
38
11
görüntülenme
indirilme
Görüntülenme 38
İndirme 11
Veri hacmi 1.9 kB
Tekil görüntülenme 37
Tekil indirme 11

Alıntı yap