Dergi makalesi Açık Erişim
Ozdemir, Tugba; Taher, Fatma; Ayinde, Babajide O.; Zurada, Jacek M.; Tuzun Ozmen, Ozge
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:257491</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Intermittency of electrical power in developing countries, as well as some European countries such as Turkey, can be eluded by taking advantage of solar energy. Correct prediction of solar radiation constitutes a very important step to take advantage of PV solar panels. We propose an experimental study to predict the amount of solar radiation using a classical artificial neural network (ANN) and deep learning methods. PV panel and solar radiation data were collected at Duzce University in Turkey. Moreover, we included meteorological data collected from the Meteorological Ministry of Turkey in Duzce. Data were collected on a daily basis with a 5-min interval. Data were cleaned and preprocessed to train long-short-term memory (LSTM) and ANN models to predict the solar radiation amount of one day ahead. Models were evaluated using coefficient of determination (R-2), mean square error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and mean biased error (MBE). LSTM outperformed ANN with R-2, MSE, RMSE, MAE, and MBE of 0.93, 0.008, 0.089, 0.17, and 0.09, respectively. Moreover, we compared our results with two similar studies in the literature. The proposed study paves the way for utilizing renewable energy by leveraging the usage of PV panels.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Ozdemir, Tugba</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:33b4435216669f804417ce2a0741fe68</subfield>
<subfield code="s">195</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/257491/files/bib-280d0913-2465-4993-94f4-28c189012e8c.txt</subfield>
</datafield>
<controlfield tag="005">20230729073325.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2022-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.3390/app12094463</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Comparison of Feedforward Perceptron Network with LSTM for Solar Cell Radiation Prediction</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">12</subfield>
<subfield code="p">APPLIED SCIENCES-BASEL</subfield>
<subfield code="n">9</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Taher, Fatma</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Ayinde, Babajide O.</subfield>
<subfield code="u">Univ Louisville, Elect & Comp Engn, Louisville, KY 40292 USA</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Zurada, Jacek M.</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Tuzun Ozmen, Ozge</subfield>
</datafield>
<controlfield tag="001">257491</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 30 |
| İndirme | 5 |
| Veri hacmi | 975 Bytes |
| Tekil görüntülenme | 30 |
| Tekil indirme | 5 |