Dergi makalesi Açık Erişim
Kuru, Nurdan; Birbil, S. Ilker; Gurbuzbalaban, Mert; Yildirim, Sinan
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:255605</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">We present two classes of differentially private optimization algorithms derived from the well-known accelerated first-order methods. The first algorithm is inspired by Polyak's heavy ball method and employs a smoothing approach to decrease the accumulated noise on the gradient steps required for differential privacy. The second class of algorithms are based on Nesterov's accelerated gradient method and its recent multistage variant. We propose a noise dividing mechanism for the iterations of Nesterov's method in order to improve the error behavior of the algorithm. The convergence rate analyses are provided for both the heavy ball and the Nesterov's accelerated gradient method with the help of the dynamical system analysis techniques. Finally, we conclude with our numerical experiments showing that the presented algorithms have advantages over the well-known differentially private algorithms.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Kuru, Nurdan</subfield>
<subfield code="u">Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:f93cfe12509cea5d4eedaeb4de696a51</subfield>
<subfield code="s">168</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/255605/files/bib-0da67ca0-58a4-41f9-9bb9-fda12eee8037.txt</subfield>
</datafield>
<controlfield tag="005">20230729043100.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2022-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1137/20M1355847</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">DIFFERENTIALLY PRIVATE ACCELERATED OPTIMIZATION ALGORITHMS</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">32</subfield>
<subfield code="p">SIAM JOURNAL ON OPTIMIZATION</subfield>
<subfield code="c">795-821</subfield>
<subfield code="n">2</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Birbil, S. Ilker</subfield>
<subfield code="u">Univ Amsterdam, Amsterdam Business Sch, NL-1018 TV Amsterdam, Netherlands</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Gurbuzbalaban, Mert</subfield>
<subfield code="u">Rutgers State Univ, Dept Management Sci & Informat Syst, Piscataway, NJ 08854 USA</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Yildirim, Sinan</subfield>
<subfield code="u">Sabanci Univ, Fac Engn & Nat Sci, TR-34956 Istanbul, Turkey</subfield>
</datafield>
<controlfield tag="001">255605</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 41 |
| İndirme | 10 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 39 |
| Tekil indirme | 10 |