Dergi makalesi Açık Erişim
Tasar, Beyda
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:255253</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">The purpose of this study is to use behavioral biometric features of bioelectric signals for classifying and identifying people. This paper describes the development of a high-predictive-accuracy Convolutional Neural Network (CNN)-based human recognition system. When four participants make seven separate finger/wrist movements, their bioelectric signals are captured and recorded by the bio-armband sensor. The developed CNN model is used to generate features from EMG signals and to classify humans. The model's success is assessed in two cases in the study. In the first case, separate human classification is made for seven different movements. In the second case, the human classification performance is tested using the entire dataset, regardless of the movement type. It is observed that the average accuracy of 98.833%, 99.166%, 98.333%, 100%, 99.708%, and 99.791% is reached for seven different subcases in Case 1, respectively. It is observed that the network model developed for Case 2 has 100% accuracy in human classification/identification, 100% recall, 100% sensitivity, and 100% F1-score performance.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Tasar, Beyda</subfield>
<subfield code="u">Firat Univ, Dept Mechatron Engn, Elazig, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:07b2a49aec68d78cb0d68e9ad396bc60</subfield>
<subfield code="s">180</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/255253/files/bib-8fe99516-ba34-4186-9494-1aabef44dbfb.txt</subfield>
</datafield>
<controlfield tag="005">20230729033907.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2022-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1007/s13369-022-06909-z</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Deep-BBiIdNet: Behavioral Biometric Identification Method Using Forearm Electromyography Signal</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">47</subfield>
<subfield code="p">ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING</subfield>
<subfield code="c">14571-14581</subfield>
<subfield code="n">11</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<controlfield tag="001">255253</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 38 |
| İndirme | 10 |
| Veri hacmi | 1.8 kB |
| Tekil görüntülenme | 36 |
| Tekil indirme | 9 |