Dergi makalesi Açık Erişim

A low-energy limit of Yang-Mills theory on de Sitter space

Cork, Josh; Kutluk, Emine; Lechtenfeld, Olaf; Popov, Alexander


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/240306</identifier>
  <creators>
    <creator>
      <creatorName>Cork, Josh</creatorName>
      <givenName>Josh</givenName>
      <familyName>Cork</familyName>
      <affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Kutluk, Emine</creatorName>
      <givenName>Emine</givenName>
      <familyName>Kutluk</familyName>
      <affiliation>Physics Department, Middle East Technical University, Dumlupınar Bulvarı No. 1, Ankara, 06800, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Lechtenfeld, Olaf</creatorName>
      <givenName>Olaf</givenName>
      <familyName>Lechtenfeld</familyName>
      <affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Popov, Alexander</creatorName>
      <givenName>Alexander</givenName>
      <familyName>Popov</familyName>
      <affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Low-Energy Limit Of Yang-Mills Theory On De Sitter Space</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/240306</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/JHEP09(2021)089</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;We consider Yang-Mills theory with a compact structure group G on four-dimensional de Sitter space dS4. Using conformal invariance, we transform the theory from dS4 to the finite cylinder   $I$     × S 3, where   $I$     = (−π/2, π/2) and S 3 is the round three-sphere. By considering only bundles P →   $I$     × S 3 which are framed over the temporal boundary ∂   $I$     × S 3, we introduce additional degrees of freedom which restrict gauge transformations to be identity on ∂   $I$     × S 3. We study the consequences of the framing on the variation of the action, and on the Yang-Mills equations. This allows for an infinite-dimensional moduli space of Yang-Mills vacua on dS4. We show that, in the low-energy limit, when momentum along   $I$     is much smaller than along S 3, the Yang-Mills dynamics in dS4 is approximated by geodesic motion in the infinite-dimensional space   $M$     vac of gauge-inequivalent Yang-Mills vacua on S 3. Since   $M$     vac ≅ C ∞(S 3, G)/G is a group manifold, the dynamics is expected to be integrable.&lt;/p&gt;</description>
  </descriptions>
</resource>
79
16
görüntülenme
indirilme
Görüntülenme 79
İndirme 16
Veri hacmi 7.4 MB
Tekil görüntülenme 76
Tekil indirme 15

Alıntı yap