Dergi makalesi Açık Erişim
Cork, Josh; Kutluk, Emine; Lechtenfeld, Olaf; Popov, Alexander
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/240306</identifier>
<creators>
<creator>
<creatorName>Cork, Josh</creatorName>
<givenName>Josh</givenName>
<familyName>Cork</familyName>
<affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
</creator>
<creator>
<creatorName>Kutluk, Emine</creatorName>
<givenName>Emine</givenName>
<familyName>Kutluk</familyName>
<affiliation>Physics Department, Middle East Technical University, Dumlupınar Bulvarı No. 1, Ankara, 06800, Turkey</affiliation>
</creator>
<creator>
<creatorName>Lechtenfeld, Olaf</creatorName>
<givenName>Olaf</givenName>
<familyName>Lechtenfeld</familyName>
<affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
</creator>
<creator>
<creatorName>Popov, Alexander</creatorName>
<givenName>Alexander</givenName>
<familyName>Popov</familyName>
<affiliation>Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstraße 2, Hannover, 30167, Germany</affiliation>
</creator>
</creators>
<titles>
<title>A Low-Energy Limit Of Yang-Mills Theory On De Sitter Space</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/240306</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/JHEP09(2021)089</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>We consider Yang-Mills theory with a compact structure group G on four-dimensional de Sitter space dS4. Using conformal invariance, we transform the theory from dS4 to the finite cylinder $I$ × S 3, where $I$ = (−π/2, π/2) and S 3 is the round three-sphere. By considering only bundles P → $I$ × S 3 which are framed over the temporal boundary ∂ $I$ × S 3, we introduce additional degrees of freedom which restrict gauge transformations to be identity on ∂ $I$ × S 3. We study the consequences of the framing on the variation of the action, and on the Yang-Mills equations. This allows for an infinite-dimensional moduli space of Yang-Mills vacua on dS4. We show that, in the low-energy limit, when momentum along $I$ is much smaller than along S 3, the Yang-Mills dynamics in dS4 is approximated by geodesic motion in the infinite-dimensional space $M$ vac of gauge-inequivalent Yang-Mills vacua on S 3. Since $M$ vac ≅ C ∞(S 3, G)/G is a group manifold, the dynamics is expected to be integrable.</p></description>
</descriptions>
</resource>
| Görüntülenme | 79 |
| İndirme | 16 |
| Veri hacmi | 7.4 MB |
| Tekil görüntülenme | 76 |
| Tekil indirme | 15 |