Dergi makalesi Açık Erişim
Eker, Serhan; Degirmenci, Nedim
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/239236</identifier>
<creators>
<creator>
<creatorName>Eker, Serhan</creatorName>
<givenName>Serhan</givenName>
<familyName>Eker</familyName>
<affiliation>Ibrahim Cecen Univ Agri, Dept Math, Agri, Turkey</affiliation>
</creator>
<creator>
<creatorName>Degirmenci, Nedim</creatorName>
<givenName>Nedim</givenName>
<familyName>Degirmenci</familyName>
<affiliation>Eskisehir Tech Univ, Dept Math, Eskisehir, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Eigenvalue Estimates In Terms Of The Extrinsic Curvature</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/239236</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s40995-021-01136-x</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In this paper, we give a new lower bound for the eigenvalues of the Dirac operator defined on the Spin Riemannian hypersurface manifold endowed with 2-tensor, in terms of the Energy-Momentum tensor, scalar curvature and extrinsic curvature. Then this estimate is improved in two different ways by considering the conformal invariance of the Dirac operator. The first is given in term of the first eigenvalue of the Yamabe operator. The latter, is given in terms of the the area of a topological 2-sphere.</description>
</descriptions>
</resource>
| Görüntülenme | 46 |
| İndirme | 9 |
| Veri hacmi | 1.6 kB |
| Tekil görüntülenme | 42 |
| Tekil indirme | 9 |