Konferans bildirisi Açık Erişim
Erdem, Dorukhan; Kumbasar, Tufan
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:237262</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Fuzzy Logic Systems (FLSs), especially Interval Type-2 (IT2) ones, are proven to achieve good results in various tasks, including classification problems. However, IT2-FLSs suffer from the curse of dimensionality problem, just like its Type-1 (T1) counterparts, and also training complexity since IT2-FLS have a large number of learnable parameters when compared to T1-FLSs. Deep learning (DL) architectures on the other hand can handle large learnable parameter sets for good generalizability but have their disadvantages. In this study, we present DL based approach with knowledge distillation for IT2-FLSs which transfers the generalizability features of deep models into IT2-FLS and increases its learning performance significantly by eliminating the problems that may arise from large input sizes and high rule counts. We present in detail the proposed approach with parameterization tricks so that the training of IT2-FLS can be accomplished straightforwardly within the widely employed DL frameworks without violating the definitions of IT2-FSs. We present comparative analysis to show the benefits of the inclusion knowledge distillation in the learning of IT2-FLSs with respect to rule number and input dimension size.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">conferencepaper</subfield>
</datafield>
<datafield tag="711" ind1=" " ind2=" ">
<subfield code="a">IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE)</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Erdem, Dorukhan</subfield>
<subfield code="u">Istanbul Tech Univ, Control & Automat Engn Dept, Istanbul, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:d6ffa2701fbb39a1be138cce7762b24a</subfield>
<subfield code="s">189</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/237262/files/bib-235b329e-8b3f-4046-be09-75a022b3052c.txt</subfield>
</datafield>
<controlfield tag="005">20221007095329.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2021-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1109/FUZZ45933.2021.9494471</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Enhancing the Learning of Interval Type-2 Fuzzy Classifiers with Knowledge Distillation</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Kumbasar, Tufan</subfield>
<subfield code="u">Istanbul Tech Univ, Control & Automat Engn Dept, Istanbul, Turkey</subfield>
</datafield>
<controlfield tag="001">237262</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 33 |
| İndirme | 11 |
| Veri hacmi | 2.1 kB |
| Tekil görüntülenme | 33 |
| Tekil indirme | 11 |