Dergi makalesi Açık Erişim
Dogan, Ilgin; Lokman, Banu; Koksalan, Murat
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/236946</identifier> <creators> <creator> <creatorName>Dogan, Ilgin</creatorName> <givenName>Ilgin</givenName> <familyName>Dogan</familyName> <affiliation>Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA</affiliation> </creator> <creator> <creatorName>Lokman, Banu</creatorName> <givenName>Banu</givenName> <familyName>Lokman</familyName> <affiliation>Univ Portsmouth, Portsmouth Business Sch, Ctr Operat Res & Logist, Portsmouth PO1 3DE, Hants, England</affiliation> </creator> <creator> <creatorName>Koksalan, Murat</creatorName> <givenName>Murat</givenName> <familyName>Koksalan</familyName> </creator> </creators> <titles> <title>Representing The Nondominated Set In Multi-Objective Mixed-Integer Programs</title> </titles> <publisher>Aperta</publisher> <publicationYear>2022</publicationYear> <dates> <date dateType="Issued">2022-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/236946</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.ejor.2021.04.005</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">A B S T R A C T In this paper, we consider generating a representative subset of nondominated points at a prespecified precision in multi-objective mixed-integer programs (MOMIPs). The number of nondominated points grows exponentially with problem size and finding all nondominated points is typically hard in MOMIPs. Representing the nondominated set with a small subset of nondominated points is important for a decision maker to get an understanding of the layout of solutions. The shape and density of the nondominated points over the objective space may be critical in obtaining a set of solutions that represent the nondominated set well. We develop an exact algorithm that generates a representative set guaranteeing a prespecified precision. Our experiments on a variety of problems demonstrate that our algorithm outperforms existing approaches in terms of both the cardinality of the representative set and computation times. (c) 2021 Elsevier B.V. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 15 |
İndirme | 6 |
Veri hacmi | 1.1 kB |
Tekil görüntülenme | 15 |
Tekil indirme | 6 |