Dergi makalesi Açık Erişim
Dogan, Ilgin; Lokman, Banu; Koksalan, Murat
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/236946</identifier>
<creators>
<creator>
<creatorName>Dogan, Ilgin</creatorName>
<givenName>Ilgin</givenName>
<familyName>Dogan</familyName>
<affiliation>Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA</affiliation>
</creator>
<creator>
<creatorName>Lokman, Banu</creatorName>
<givenName>Banu</givenName>
<familyName>Lokman</familyName>
<affiliation>Univ Portsmouth, Portsmouth Business Sch, Ctr Operat Res & Logist, Portsmouth PO1 3DE, Hants, England</affiliation>
</creator>
<creator>
<creatorName>Koksalan, Murat</creatorName>
<givenName>Murat</givenName>
<familyName>Koksalan</familyName>
</creator>
</creators>
<titles>
<title>Representing The Nondominated Set In Multi-Objective Mixed-Integer Programs</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2022</publicationYear>
<dates>
<date dateType="Issued">2022-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/236946</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.ejor.2021.04.005</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">A B S T R A C T In this paper, we consider generating a representative subset of nondominated points at a prespecified precision in multi-objective mixed-integer programs (MOMIPs). The number of nondominated points grows exponentially with problem size and finding all nondominated points is typically hard in MOMIPs. Representing the nondominated set with a small subset of nondominated points is important for a decision maker to get an understanding of the layout of solutions. The shape and density of the nondominated points over the objective space may be critical in obtaining a set of solutions that represent the nondominated set well. We develop an exact algorithm that generates a representative set guaranteeing a prespecified precision. Our experiments on a variety of problems demonstrate that our algorithm outperforms existing approaches in terms of both the cardinality of the representative set and computation times. (c) 2021 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 29 |
| İndirme | 9 |
| Veri hacmi | 1.6 kB |
| Tekil görüntülenme | 29 |
| Tekil indirme | 9 |