Dergi makalesi Açık Erişim

Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts - structure-electrochemical activity relationship

Sonmez, Turgut; Belthle, Kendra Solveig; Iemhoff, Andree; Uecker, Jan; Artz, Jens; Bisswanger, Timo; Stampfer, Christoph; Hamzah, Hairul Hisham; Nicolae, Sabina Alexandra; Titirici, Maria-Magdalena; Palkovits, Regina


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Sonmez, Turgut</dc:creator>
  <dc:creator>Belthle, Kendra Solveig</dc:creator>
  <dc:creator>Iemhoff, Andree</dc:creator>
  <dc:creator>Uecker, Jan</dc:creator>
  <dc:creator>Artz, Jens</dc:creator>
  <dc:creator>Bisswanger, Timo</dc:creator>
  <dc:creator>Stampfer, Christoph</dc:creator>
  <dc:creator>Hamzah, Hairul Hisham</dc:creator>
  <dc:creator>Nicolae, Sabina Alexandra</dc:creator>
  <dc:creator>Titirici, Maria-Magdalena</dc:creator>
  <dc:creator>Palkovits, Regina</dc:creator>
  <dc:date>2021-01-01</dc:date>
  <dc:description>Nitrogen-rich porous carbon polymers are highly promising oxygen reduction reaction (ORR) catalysts and possess great potential to replace Pt-based precious metals used in energy storage and conversion systems. In this study, covalent triazine frameworks (CTFs) were synthesized via an ionothermal route based on different monomers and synthesis temperatures (400-750 degrees C) and tested in alkaline media with a rotating disk electrode (RDE). The effect of the applied monomer and temperature on the surface functionalities of the frameworks and thus correlation to their ORR activities are deeply discussed. Micro/mesoporous, hierarchically ordered and highly conductive N-rich materials with up to 2407 m(2) g(-1) specific surface areas and 2.49 cm(3) g(-1) pore volumes were achievable. Owing to the high surface area (1742 m(2) g(-1)), pore volume (1.56 cm(3) g(-1)), highest conductivity, electrochemically active surface area and hierarchical mesoporous structure, CTF DCBP-750 facilitated 0.9 V onset potential (only 0.06 V larger than that of the benchmark 10 wt% Pt/C) with 5.1 mA cm(-2) limiting current density. In addition to the structural properties, graphitic nitrogen species, active sites responsible for binding and activating O-2, rather than pyridinic nitrogen appear to be more important for the overall ORR performance. Thus, the trade-off point is crucial to obtain optimal ORR activity with metal-free CTFs.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/234716</dc:identifier>
  <dc:identifier>oai:aperta.ulakbim.gov.tr:234716</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>CATALYSIS SCIENCE &amp; TECHNOLOGY 11(18) 6191-6204</dc:source>
  <dc:title>Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts - structure-electrochemical activity relationship</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
14
5
görüntülenme
indirilme
Görüntülenme 14
İndirme 5
Veri hacmi 1.7 kB
Tekil görüntülenme 13
Tekil indirme 5

Alıntı yap