Dergi makalesi Açık Erişim

Integration of variance component estimation with robust Kalman filter for single-frequency multi-GNSS positioning

Bahadur, Berkay; Nohutcu, Metin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/231342</identifier>
  <creators>
    <creator>
      <creatorName>Bahadur, Berkay</creatorName>
      <givenName>Berkay</givenName>
      <familyName>Bahadur</familyName>
      <affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Nohutcu, Metin</creatorName>
      <givenName>Metin</givenName>
      <familyName>Nohutcu</familyName>
      <affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Integration Of Variance Component Estimation With Robust Kalman Filter For Single-Frequency Multi-Gnss Positioning</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/231342</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.measurement.2020.108596</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Although the emergence of new satellite systems offers considerable opportunities, the integration of Global Navigation Satellite System (GNSS) multi-constellation entails more complicated approaches, especially for stochastic modeling. This study proposes a filtering approach that combines robust Kalman filtering and variance component estimation to specify the weights of multi-GNSS observations in single-frequency positioning. In this approach, robust Kalman filter resists the impact of unexpected outliers by introducing the equivalent covariance matrix, while multi-GNSS observation variances are determined adaptively in each epoch by using variance component estimation. The study demonstrated that the proposed filtering approach determines the variances of multi-GNSS observations more rigorously as a result of the assessment of the observation residuals. The results also showed that the positioning accuracy of single-frequency multi-GNSS positioning that depends on the conventional weighting approaches is improved by 18.5% on average with the employment of the proposed filtering approach and its improvement ratio can exceed 30% in some stations.</description>
  </descriptions>
</resource>
24
4
görüntülenme
indirilme
Görüntülenme 24
İndirme 4
Veri hacmi 692 Bytes
Tekil görüntülenme 23
Tekil indirme 4

Alıntı yap