Dergi makalesi Açık Erişim
Bahadur, Berkay; Nohutcu, Metin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/231342</identifier> <creators> <creator> <creatorName>Bahadur, Berkay</creatorName> <givenName>Berkay</givenName> <familyName>Bahadur</familyName> <affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Nohutcu, Metin</creatorName> <givenName>Metin</givenName> <familyName>Nohutcu</familyName> <affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Integration Of Variance Component Estimation With Robust Kalman Filter For Single-Frequency Multi-Gnss Positioning</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/231342</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.measurement.2020.108596</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Although the emergence of new satellite systems offers considerable opportunities, the integration of Global Navigation Satellite System (GNSS) multi-constellation entails more complicated approaches, especially for stochastic modeling. This study proposes a filtering approach that combines robust Kalman filtering and variance component estimation to specify the weights of multi-GNSS observations in single-frequency positioning. In this approach, robust Kalman filter resists the impact of unexpected outliers by introducing the equivalent covariance matrix, while multi-GNSS observation variances are determined adaptively in each epoch by using variance component estimation. The study demonstrated that the proposed filtering approach determines the variances of multi-GNSS observations more rigorously as a result of the assessment of the observation residuals. The results also showed that the positioning accuracy of single-frequency multi-GNSS positioning that depends on the conventional weighting approaches is improved by 18.5% on average with the employment of the proposed filtering approach and its improvement ratio can exceed 30% in some stations.</description> </descriptions> </resource>
Görüntülenme | 24 |
İndirme | 4 |
Veri hacmi | 692 Bytes |
Tekil görüntülenme | 23 |
Tekil indirme | 4 |