Dergi makalesi Açık Erişim
Bahadur, Berkay; Nohutcu, Metin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/231342</identifier>
<creators>
<creator>
<creatorName>Bahadur, Berkay</creatorName>
<givenName>Berkay</givenName>
<familyName>Bahadur</familyName>
<affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Nohutcu, Metin</creatorName>
<givenName>Metin</givenName>
<familyName>Nohutcu</familyName>
<affiliation>Hacettepe Univ, Dept Geomat Engn, TR-06800 Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Integration Of Variance Component Estimation With Robust Kalman Filter For Single-Frequency Multi-Gnss Positioning</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/231342</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.measurement.2020.108596</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Although the emergence of new satellite systems offers considerable opportunities, the integration of Global Navigation Satellite System (GNSS) multi-constellation entails more complicated approaches, especially for stochastic modeling. This study proposes a filtering approach that combines robust Kalman filtering and variance component estimation to specify the weights of multi-GNSS observations in single-frequency positioning. In this approach, robust Kalman filter resists the impact of unexpected outliers by introducing the equivalent covariance matrix, while multi-GNSS observation variances are determined adaptively in each epoch by using variance component estimation. The study demonstrated that the proposed filtering approach determines the variances of multi-GNSS observations more rigorously as a result of the assessment of the observation residuals. The results also showed that the positioning accuracy of single-frequency multi-GNSS positioning that depends on the conventional weighting approaches is improved by 18.5% on average with the employment of the proposed filtering approach and its improvement ratio can exceed 30% in some stations.</description>
</descriptions>
</resource>
| Görüntülenme | 41 |
| İndirme | 8 |
| Veri hacmi | 1.4 kB |
| Tekil görüntülenme | 40 |
| Tekil indirme | 8 |