Dergi makalesi Açık Erişim
Erdem, Firat; Bayram, Bulent; Bakirman, Tolga; Bayrak, Onur Can; Akpinar, Burak
{ "@context": "https://schema.org/", "@id": 229728, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Eskisehir Tech Univ, Inst Earth & Space Sci, Eskisehir, Turkey", "name": "Erdem, Firat" }, { "@type": "Person", "affiliation": "Yildiz Tech Univ, Geomat Engn, Istanbul, Turkey", "name": "Bayram, Bulent" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Res & Applicat Ctr Satellite Commun & Remote Sens, Istanbul, Turkey", "name": "Bakirman, Tolga" }, { "@type": "Person", "affiliation": "Yildiz Tech Univ, Geomat Engn, Istanbul, Turkey", "name": "Bayrak, Onur Can" }, { "@type": "Person", "affiliation": "Yildiz Tech Univ, Geomat Engn, Istanbul, Turkey", "name": "Akpinar, Burak" } ], "datePublished": "2021-01-01", "description": "Shorelines constantly vary due to natural, urbanization and anthropogenic effects such as global warming, population growth, and environmental pollution. Sustainable monitoring of coastal changes is vital in terms of coastal resource management, environmental preservation and planning. Publicly available Landsat 8 OLI (Operational Land Manager) images provide accurate, reliable, temporal and up-to-date information about coastal areas. Recently, the use of machine learning and deep learning algorithms have become widespread. In this study, we used our public Landsat 8 OLI satellite image dataset to create a majority voting method which is an ensemble automatic shoreline segmentation system (WaterNet) to obtain shorelines automatically. For this purpose, different deep learning architectures have been utilized namely as Standard U-Net, Dilated U-Net, Fractal U-Net, FC-DenseNet, and Pix2Pix. Also, we have suggested a novel framework to create labeling data from OpenStreetMap service to create a unique dataset called YTU-WaterNet. According to the results, IoU and Fl scores have been calculated as 99.59% and 99.79% for the WaterNet. The results indicate that the WaterNet method outperforms other methods in terms of shoreline extraction from Landsat 8 OLI satellite images. (C) 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.", "headline": "An ensemble deep learning based shoreline segmentation approach (WaterNet) from Landsat 8 OLI images", "identifier": 229728, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "An ensemble deep learning based shoreline segmentation approach (WaterNet) from Landsat 8 OLI images", "url": "https://aperta.ulakbim.gov.tr/record/229728" }
Görüntülenme | 23 |
İndirme | 6 |
Veri hacmi | 1.3 kB |
Tekil görüntülenme | 22 |
Tekil indirme | 6 |