Dergi makalesi Açık Erişim
Topal, Sema; Topal, Sebahat; Ulukan, Pelin; Ustamehmetoglu, Belkis; Ozturk, Turan; Sezer, Esma
{ "@context": "https://schema.org/", "@id": 229580, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey", "name": "Topal, Sema" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey", "name": "Topal, Sebahat" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey", "name": "Ulukan, Pelin" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey", "name": "Ustamehmetoglu, Belkis" }, { "@type": "Person", "name": "Ozturk, Turan" }, { "@type": "Person", "affiliation": "Istanbul Tech Univ, Dept Chem, TR-34469 Istanbul, Turkey", "name": "Sezer, Esma" } ], "datePublished": "2021-01-01", "description": "Synthesis of 3-(4-fluorophenyl)thieno[3,2-b]thiophene (FPhTT) and 3,3'-(4- fluorophenyl)dithieno[3,2-b;2',3'-d]thiophene (FPhDTT) were achieved starting from 3-bromothiophene and 3,4-dibromothiophene, respectively. They were electropolymerized and the resulting polymers P[FPhTT] and P[FPhTT] were characterized by diverse electrochemical methods such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), electrochemical quartz crystal microbalance (EQCM) and spectroelectrochemical measurements. Mechanism of electropolymerization of the monomers was supported by DFT level calculations. Band gaps of P[FPhTT] and P[FPhTT] were calculated as 1.63 and 1.77 eV, respectively, from the onset absorptions of the absorption spectra. From EIS measurements, the highest capacitance values of P[FPhTT] and P[FPhTT]were calculated to be 39.4 and 281.7 Fg(1-), respectively, when the applied potentials were equal to their oxidation peak potentials. Surface characterization of the P[FPhTT] and P[FPhTT] films on ITO electrodes were performed by atomic force microscope (AFM) and the results suggested that P[FPhTT] had more porous surface. GCD results indicated that P[FPhTT] had higher energy density than P[FPhTT], possibly due to its porous structure. According to the ECD results, P[FPhTT] has more stable optical properties. As a conclusion, P[FPhTT] might be suggested for energy storage applications while P[FPhTT] could be suitable for electrochromic devices. (C) 2021 Elsevier Ltd. All rights reserved.", "headline": "Synthesis and characterization of 3-(4-fluorophenyl)thieno[3,2-b]thiophene and 3,3 '-(4-fluorophenyl)dithieno[3,2-b;2 ',3 '-d]thiophene molecules", "identifier": 229580, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "Synthesis and characterization of 3-(4-fluorophenyl)thieno[3,2-b]thiophene and 3,3 '-(4-fluorophenyl)dithieno[3,2-b;2 ',3 '-d]thiophene molecules", "url": "https://aperta.ulakbim.gov.tr/record/229580" }
Görüntülenme | 24 |
İndirme | 4 |
Veri hacmi | 1.1 kB |
Tekil görüntülenme | 21 |
Tekil indirme | 4 |