Dergi makalesi Açık Erişim

The sufficient conditions for continuous epsilon-optimal feedbacks in control problems with a terminal cost

Dzhafarov, V. Ya.; Subbotina, N. N.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/21489</identifier>
  <creators>
    <creator>
      <creatorName>Dzhafarov, V. Ya.</creatorName>
      <givenName>V. Ya.</givenName>
      <familyName>Dzhafarov</familyName>
    </creator>
    <creator>
      <creatorName>Subbotina, N. N.</creatorName>
      <givenName>N. N.</givenName>
      <familyName>Subbotina</familyName>
    </creator>
  </creators>
  <titles>
    <title>The Sufficient Conditions For Continuous Epsilon-Optimal Feedbacks In Control Problems With A Terminal Cost</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2011</publicationYear>
  <dates>
    <date dateType="Issued">2011-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/21489</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jappmathmech.2011.07.011</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The existence of continuous positional strategies of epsilon-optimal feedback is proved for linear optimal control problems with a convex terminal cost. These continuous feedbacks are determined from Bellman's equation in epsilon-perturbed control problems with an integral-terminal cost and a smooth value function. An example is given in which an epsilon-optimal continuous feedback does not exist. It is shown that the point limit of the epsilon-optimal feedbacks when epsilon -&amp;gt; 0 determines the optimal feedback, that is, a positional strategy and, possibly, a discontinuous strategy. (C) 2011 Elsevier Ltd. All rights reserved.</description>
  </descriptions>
</resource>
44
8
görüntülenme
indirilme
Görüntülenme 44
İndirme 8
Veri hacmi 1.7 kB
Tekil görüntülenme 41
Tekil indirme 8

Alıntı yap