Dergi makalesi Açık Erişim
Dzhafarov, V. Ya.; Subbotina, N. N.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/21489</identifier> <creators> <creator> <creatorName>Dzhafarov, V. Ya.</creatorName> <givenName>V. Ya.</givenName> <familyName>Dzhafarov</familyName> </creator> <creator> <creatorName>Subbotina, N. N.</creatorName> <givenName>N. N.</givenName> <familyName>Subbotina</familyName> </creator> </creators> <titles> <title>The Sufficient Conditions For Continuous Epsilon-Optimal Feedbacks In Control Problems With A Terminal Cost</title> </titles> <publisher>Aperta</publisher> <publicationYear>2011</publicationYear> <dates> <date dateType="Issued">2011-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/21489</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jappmathmech.2011.07.011</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">The existence of continuous positional strategies of epsilon-optimal feedback is proved for linear optimal control problems with a convex terminal cost. These continuous feedbacks are determined from Bellman's equation in epsilon-perturbed control problems with an integral-terminal cost and a smooth value function. An example is given in which an epsilon-optimal continuous feedback does not exist. It is shown that the point limit of the epsilon-optimal feedbacks when epsilon -&gt; 0 determines the optimal feedback, that is, a positional strategy and, possibly, a discontinuous strategy. (C) 2011 Elsevier Ltd. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 44 |
İndirme | 8 |
Veri hacmi | 1.7 kB |
Tekil görüntülenme | 41 |
Tekil indirme | 8 |