Dergi makalesi Açık Erişim

Adomian decomposition method by Gegenbauer and Jacobi polynomials

Cenesiz, Yucel; Kurnaz, Aydin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/18139</identifier>
  <creators>
    <creator>
      <creatorName>Cenesiz, Yucel</creatorName>
      <givenName>Yucel</givenName>
      <familyName>Cenesiz</familyName>
      <affiliation>Selcuk Univ, Dept Math, Fac Sci, TR-42075 Konya, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Kurnaz, Aydin</creatorName>
      <givenName>Aydin</givenName>
      <familyName>Kurnaz</familyName>
      <affiliation>Selcuk Univ, Dept Math, Fac Sci, TR-42075 Konya, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Adomian Decomposition Method By Gegenbauer And Jacobi Polynomials</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2011</publicationYear>
  <dates>
    <date dateType="Issued">2011-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/18139</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/00207160.2011.611503</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this paper, orthogonal polynomials on [-1,1] interval are used to modify the Adomian decomposition method (ADM). Gegenbauer and Jacobi polynomials are employed to improve the ADM and compared with the method of using Chebyshev and Legendre polynomials. To show the efficiency of the developed method, some linear and nonlinear examples are solved by the proposed method, results are compared with other modifications of the ADM and the exact solutions of the problems.</description>
  </descriptions>
</resource>
45
8
görüntülenme
indirilme
Görüntülenme 45
İndirme 8
Veri hacmi 1.3 kB
Tekil görüntülenme 42
Tekil indirme 8

Alıntı yap