Dergi makalesi Açık Erişim
Das, Kinkar C.; Cevik, Ahmet S.; Cangul, Ismail N.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/14497</identifier>
<creators>
<creator>
<creatorName>Das, Kinkar C.</creatorName>
<givenName>Kinkar C.</givenName>
<familyName>Das</familyName>
<affiliation>Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea</affiliation>
</creator>
<creator>
<creatorName>Cevik, Ahmet S.</creatorName>
<givenName>Ahmet S.</givenName>
<familyName>Cevik</familyName>
<affiliation>Selcuk Univ, Fac Sci, Dept Math, TR-42075 Campus, Konya, Turkey</affiliation>
</creator>
<creator>
<creatorName>Cangul, Ismail N.</creatorName>
<givenName>Ismail N.</givenName>
<familyName>Cangul</familyName>
<affiliation>Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>The Number Of Spanning Trees Of A Graph</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2013</publicationYear>
<dates>
<date dateType="Issued">2013-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/14497</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1186/1029-242X-2013-395</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let G be a simple connected graph of order n, m edges, maximum degree Delta(1) and minimum degree delta. Li et al. (Appl. Math. Lett. 23: 286-290, 2010) gave an upper bound on number of spanning trees of a graph in terms of n, m, Delta(1) and delta:</description>
</descriptions>
</resource>
| Görüntülenme | 50 |
| İndirme | 7 |
| Veri hacmi | 854 Bytes |
| Tekil görüntülenme | 43 |
| Tekil indirme | 7 |