Dergi makalesi Açık Erişim

Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing

Arin, Efe; Ozbayoglu, A. Murat


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Deep Learning Based Hybrid Computational Intelligence Models for Options Pricing</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">COMPUTATIONAL ECONOMICS</subfield>
  </datafield>
  <controlfield tag="001">11489</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Options are commonly used by traders and investors for hedging their investments. They also allow the traders to execute leveraged trading opportunities. Meanwhile accurately pricing the intended option is crucial to perform such tasks. The most common technique used in options pricing is Black-Scholes (BS) formula. However, there are slight differences between the BS model output and the actual options price due to the ambiguity in defining the volatility. In this study, we developed hybrid deep learning based options pricing models to achieve better pricing compared to BS. The results indicate that the proposed models can generate more accurate prices for all option classes. Compared with BS using annualized 20 intraday returns as volatility, 94.5% improvement is achieved in option pricing in terms of mean squared error.</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">TOBB Univ Econ &amp; Technol, Dept Comp Engn, TR-06560 Ankara, Turkey</subfield>
    <subfield code="a">Ozbayoglu, A. Murat</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">TOBB Univ Econ &amp; Technol, Dept Elect Engn, TR-06560 Ankara, Turkey</subfield>
    <subfield code="a">Arin, Efe</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210315074050.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:11489</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:a8f422234f9042badbeafc00696fd010</subfield>
    <subfield code="s">139</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/11489/files/bib-48f3a2f2-e55c-4844-b8e9-072d94a09ff8.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s10614-020-10063-9</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
38
7
görüntülenme
indirilme
Görüntülenme 38
İndirme 7
Veri hacmi 973 Bytes
Tekil görüntülenme 37
Tekil indirme 7

Alıntı yap