Dergi makalesi Açık Erişim

The Hausdorff topology as a moduli space

Gillam, W. D.; Karan, A.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/111146</identifier>
  <creators>
    <creator>
      <creatorName>Gillam, W. D.</creatorName>
      <givenName>W. D.</givenName>
      <familyName>Gillam</familyName>
    </creator>
    <creator>
      <creatorName>Karan, A.</creatorName>
      <givenName>A.</givenName>
      <familyName>Karan</familyName>
    </creator>
  </creators>
  <titles>
    <title>The Hausdorff Topology As A Moduli Space</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/111146</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.topol.2017.10.003</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In 1914, F. Hausdorff defined a metric on the set of closed subsets of a metric space X. This metric induces a topology on the set H of compact subsets of X, called the Hausdorff topology. We show that the topological space H represents the functor on the category of sequential topological spaces taking T to the set of closed subspaces Z of T x X for which the projection pi(1) : Z -&amp;gt; T is open and proper. In particular, the Hausdorff topology on H depends on the metric space X only through the underlying topological space of X. The Hausdorff space H provides an analog of the Hilbert scheme in topology. As an example application, we explore a certain quotient construction, called the Hausdorff quotient, which is the analog of the Hilbert quotient in algebraic geometry. (C) 2017 Elsevier B.V. All rights reserved.</description>
  </descriptions>
</resource>
42
12
görüntülenme
indirilme
Görüntülenme 42
İndirme 12
Veri hacmi 1.5 kB
Tekil görüntülenme 37
Tekil indirme 11

Alıntı yap