Dergi makalesi Açık Erişim
Gillam, W. D.; Karan, A.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/111146</identifier>
<creators>
<creator>
<creatorName>Gillam, W. D.</creatorName>
<givenName>W. D.</givenName>
<familyName>Gillam</familyName>
</creator>
<creator>
<creatorName>Karan, A.</creatorName>
<givenName>A.</givenName>
<familyName>Karan</familyName>
</creator>
</creators>
<titles>
<title>The Hausdorff Topology As A Moduli Space</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2017</publicationYear>
<dates>
<date dateType="Issued">2017-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/111146</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.topol.2017.10.003</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In 1914, F. Hausdorff defined a metric on the set of closed subsets of a metric space X. This metric induces a topology on the set H of compact subsets of X, called the Hausdorff topology. We show that the topological space H represents the functor on the category of sequential topological spaces taking T to the set of closed subspaces Z of T x X for which the projection pi(1) : Z -&gt; T is open and proper. In particular, the Hausdorff topology on H depends on the metric space X only through the underlying topological space of X. The Hausdorff space H provides an analog of the Hilbert scheme in topology. As an example application, we explore a certain quotient construction, called the Hausdorff quotient, which is the analog of the Hilbert quotient in algebraic geometry. (C) 2017 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 42 |
| İndirme | 12 |
| Veri hacmi | 1.5 kB |
| Tekil görüntülenme | 37 |
| Tekil indirme | 11 |