Dergi makalesi Açık Erişim
CERN İşbirliği
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/105427</identifier>
<creators>
<creator>
<creatorName>CERN İşbirliği</creatorName>
<affiliation>CERN</affiliation>
</creator>
</creators>
<titles>
<title>Performance Of Electron And Photon Triggers In Atlas During Lhc Run 2</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2020</publicationYear>
<dates>
<date dateType="Issued">2020-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/105427</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1140/epjc/s10052-019-7500-2</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Electron and photon triggers covering transverse energies from 5 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ to several $\text{TeV}\phantom{\rule{0.333333em}{0ex}}$ are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to $2.1×{10}^{34}\phantom{\rule{0.166667em}{0ex}}{\text{cm}}^{-2}\phantom{\rule{0.333333em}{0ex}}{\text{s}}^{-1}$ , and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ , and rises to 96% at 60 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ ; the trigger efficiency of a 25 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ . For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 $\text{GeV}\phantom{\rule{0.333333em}{0ex}}$ above the corresponding trigger threshold.</p></description>
</descriptions>
</resource>
| Görüntülenme | 126 |
| İndirme | 40 |
| Veri hacmi | 119.4 MB |
| Tekil görüntülenme | 126 |
| Tekil indirme | 39 |