Dergi makalesi Açık Erişim

NONLINEAR-WAVE MODULATION IN FLUID-FILLED DISTENSIBLE TUBES

ERBAY, S; ERBAY, HA


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/101019</identifier>
  <creators>
    <creator>
      <creatorName>ERBAY, S</creatorName>
      <givenName>S</givenName>
      <familyName>ERBAY</familyName>
    </creator>
    <creator>
      <creatorName>ERBAY, HA</creatorName>
      <givenName>HA</givenName>
      <familyName>ERBAY</familyName>
    </creator>
  </creators>
  <titles>
    <title>Nonlinear-Wave Modulation In Fluid-Filled Distensible Tubes</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>1994</publicationYear>
  <dates>
    <date dateType="Issued">1994-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/101019</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.101018</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.101019</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The present work considers one dimensional wave propagation in an infinitely long, straight and homogeneous nonlinear viscoelastic or elastic tube filled with an incompressible, inviscid fluid. Using the reductive perturbation technique, and assuming the weakness of dissipative effects, the amplitude modulation of weakly nonlinear waves is examined. It is shown that the amplitude modulation of these waves is governed by a dissipative nonlinear Schrodinger equation (NLS). In the absence of dissipative effects, this equation reduces to the classical NLS equation. The examination of the coefficients of the dissipative and classical NLS equations reveals the significance of the tube wall inertia to obtain a balance between nonlinearity and dispersion. Some special solutions of the NLS equation are given and the modulational instability of the plane wave solution is discussed for various incompressible hyperelastic materials.</description>
  </descriptions>
</resource>
21
5
görüntülenme
indirilme
Görüntülenme 21
İndirme 5
Veri hacmi 625 Bytes
Tekil görüntülenme 18
Tekil indirme 5

Alıntı yap