Yayınlanmış 1 Ocak 2014
| Sürüm v1
Dergi makalesi
Açık
Lot Sizing with Piecewise Concave Production Costs
Oluşturanlar
- 1. Bilkent Univ, Dept Ind Engn, TR-06800 Ankara, Turkey
Açıklama
We study the lot-sizing problem with piecewise concave production costs and concave holding costs. This problem is a generalization of the lot-sizing problem with quantity discounts, minimum order quantities, capacities, overloading, subcontracting or a combination of these. We develop a dynamic programming algorithm to solve this problem and answer an open question in the literature: we show that the problem is polynomially solvable when the breakpoints of the production cost function are time invariant and the number of breakpoints is fixed. For the special cases with capacities and subcontracting, the time complexity of our algorithm is as good as the complexity of algorithms available in the literature. We report the results of a computational experiment where the dynamic programming is able to solve instances that are hard for a mixed-integer programming solver. We enhance the mixed-integer programming formulation with valid inequalities based on mixing sets and use a cut-and-branch algorithm to compute better bounds. We propose a state space reduction-based heuristic algorithm for large instances and show that the solutions are of good quality by comparing them with the bounds obtained from the cut-and-branch.
Dosyalar
bib-0d86beb1-1bc3-4d58-8351-ce8ffafcaeed.txt
Dosyalar
(138 Bytes)
| Ad | Boyut | Hepisini indir |
|---|---|---|
|
md5:7b42dafd9dc87725fe56aaf63416b7f8
|
138 Bytes | Ön İzleme İndir |