Konferans bildirisi Açık Erişim

Comparative Analysis of Hyperspectral Dimension Reduction Methods

   Kozal, Ali Omer; Teke, Mustafa; Ilgin, Hakki Alparslan

Hyperspectral sensors generate images in narrow bands in continuous manner with hundreds of spectral bands. The data with large number of bands require more processing power to classify. To decrease the redundancy in hyperspectral images and increase classifying efficiency with less number of bands, dimension reduction techniques are applied. In this paper, linear and non-linear dimension reduction methods are compared in classification performance and calculation time.

Dosyalar (183 Bytes)
Dosya adı Boyutu
bib-ce3aa361-4872-4cd5-b924-9e7964d621ee.txt
md5:2f34c8c8c2f27cf6834227f68ddfcd7a
183 Bytes İndir
41
5
görüntülenme
indirilme
Görüntülenme 41
İndirme 5
Veri hacmi 915 Bytes
Tekil görüntülenme 41
Tekil indirme 5

Alıntı yap