Dergi makalesi Açık Erişim

Security-level classification for confidential documents by using adaptive neuro-fuzzy inference systems

   Alparslan, Erdem; Karahoca, Adem; Bahsi, Hayretdin

The security-level detection of a confidential document is a vital task for organizations to protect their confidential information. Diverse classification rules and techniques are being applied by human experts. Increasing number of confidential information in organizations is making difficult to classify all the documents carefully with human effort. The recommended frameworks in this study classify the internal documents of TUBITAK UEKAE (National Research Institute of Electronics and Cryptology of Turkey) by using classification algorithms naive Bayes, support vector machines (SVMs) and adaptive neuro-fuzzy inference systems (ANFISs). A hybrid approach involving support vector classifiers and adaptive neuro-fuzzy classifiers exposes the most successful accuracy rates of expert system classification. This study also states preprocessing tasks required for document classification with natural language processing. To represent term-document relations, a recommended metric TF-IDF was chosen to construct a weight matrix. Agglutinative nature of Turkish documents is handled by Turkish stemming algorithms. At the end of the article, some experimental results and success metrics are projected with accuracy rates and receiver operating characteristic (ROC) curves.

Dosyalar (185 Bytes)
Dosya adı Boyutu
bib-2f363761-21d5-4604-a456-7bfc8fd2e3e0.txt
md5:f017296aaeff59007233bb9802fd6cdf
185 Bytes İndir
69
7
görüntülenme
indirilme
Görüntülenme 69
İndirme 7
Veri hacmi 1.3 kB
Tekil görüntülenme 64
Tekil indirme 7

Alıntı yap