Dergi makalesi Açık Erişim

Extending fundamental formulas from classical B-splines to quantum B-splines

   Budakci, Gulter; Disibuyuk, Cetin; Goldman, Ron; Oruc, Halil

We derive a collection of fundamental formulas for quantum B-splines analogous to known fundamental formulas for classical B-splines. Starting from known recursive formulas for evaluation and quantum differentiation along with quantum analogues of the Marsden identity, we derive quantum analogues of the de Boor Fix formula for the dual functionals, explicit formulas for the quantum B-splines in terms of divided differences of truncated power functions, formulas for computing divided differences of arbitrary functions by quantum integrating certain quantum derivatives of these functions with respect to the quantum B-splines, closed formulas for the quantum integral of the quantum B-splines over their support, and finally a 1/q-convolution formula for uniform g-B-splines. (C) 2015 Elsevier B.V. All rights reserved.

Dosyalar (204 Bytes)
Dosya adı Boyutu
bib-22848f9a-2a9a-4a17-8690-4aa91c357a6c.txt
md5:76c3ca12d631cedbfaec55815d687fb6
204 Bytes İndir
46
9
görüntülenme
indirilme
Görüntülenme 46
İndirme 9
Veri hacmi 1.8 kB
Tekil görüntülenme 45
Tekil indirme 8
Atıflar
  • Citation Indexes: 15
Okunma İstatistikleri
  • Readers: 5

Alıntı yap

Budakci, G., Disibuyuk, C., Goldman, R. ve Oruc, H. (2015). Extending fundamental formulas from classical B-splines to quantum B-splines. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 282, 17–33. doi:10.1016/j.cam.2014.12.034

Loading...