Dergi makalesi Açık Erişim

On the feature extraction in discrete space

   Yildiz, Olcay Taner

In many pattern recognition applications, feature space expansion is a key step for improving the performance of the classifier. In this paper, we (i) expand the discrete feature space by generating all orderings of values of k discrete attributes exhaustively, (ii) modify the well-known decision tree and rule induction classifiers (ID3, Quilan, 1986 [1] and Ripper, Cohen, 1995 [2]) using these orderings as the new attributes. Our simulation results on 15 datasets from UCI repository [3] show that the novel classifiers perform better than the proper ones in terms of error rate and complexity. (C) 2013 Elsevier Ltd. All rights reserved.

Dosyalar (102 Bytes)
Dosya adı Boyutu
bib-4f3839d0-256c-4079-8eaa-58ea902fb423.txt
md5:f9b42f497d70e5a7af046e9a3cdaaeef
102 Bytes İndir
41
7
görüntülenme
indirilme
Görüntülenme 41
İndirme 7
Veri hacmi 714 Bytes
Tekil görüntülenme 35
Tekil indirme 7

Alıntı yap