Dergi makalesi Açık Erişim

Generalized eigenvalue problems with specified eigenvalues

   Kressner, Daniel; Mengi, Emre; Nakic, Ivica; Truhar, Ninoslav

We consider the distance from a (square or rectangular) matrix pencil to the nearest matrix pencil in 2-norm that has a set of specified eigenvalues. We derive a singular value optimization characterization for this problem and illustrate its usefulness for two applications. First, the characterization yields a singular value formula for determining the nearest pencil whose eigenvalues lie in a specified region in the complex plane. For instance, this enables the numerical computation of the nearest stable descriptor system in control theory. Second, the characterization partially solves the problem posed in Boutry et al. (2005, SIAM J. Matrix Anal. Appl., 27, 582-601) regarding the distance from a general rectangular pencil to the nearest pencil with a complete set of eigenvalues. The involved singular value optimization problems are solved by means of Broyden-Fletcher-Goldfarb-Shanno and Lipschitz-based global optimization algorithms.

Dosyalar (166 Bytes)
Dosya adı Boyutu
bib-85a6478e-8d8c-442e-acc5-d0df4ddbb8e0.txt
md5:ee161f92a52dec765d146902b9c1644d
166 Bytes İndir
51
11
görüntülenme
indirilme
Görüntülenme 51
İndirme 11
Veri hacmi 1.8 kB
Tekil görüntülenme 47
Tekil indirme 11

Alıntı yap