Yayınlanmış 1 Ocak 2016
| Sürüm v1
Konferans bildirisi
Açık
FUNCTIONALS ON TOROIDAL SURFACES
Açıklama
We show that the torus in R-3 is a critical point of a sequence of functionals F-n (n = 1, 2, 3,...) defined over compact surfaces (closed membranes) in R-3. When the Lagrange function epsilon is a polynomial of degree n of the mean curvature H of the torus, the radii (a, r) of the torus are constrained to satisfy, a(2)/r(2) = n(2) - n/n(2)-n-1, n >= 2. A simple generalization of torus in R-3 is a tube of radius r along a curve alpha which we call it toroidal surface (TS). We show that toroidal surfaces with non-circular curve alpha do not provide minimal energy surfaces of the functionals F-2 (n = 2,3) on closed surfaces. We discuss possible applications of the functionals discussed in this work on cell membranes.
Dosyalar
bib-7e3c334b-6613-45db-a6c3-b57f8e3c54e9.txt
Dosyalar
(152 Bytes)
| Ad | Boyut | Hepisini indir |
|---|---|---|
|
md5:e2d95e28ee77490740d2ca43e70b827e
|
152 Bytes | Ön İzleme İndir |