Dergi makalesi Açık Erişim

Entropy-based complexity measures for gait data of patients with Parkinson's disease

   Afsar, Ozgur; Tirnakli, Ugur; Kurths, Juergen

Shannon, Kullback-Leibler, and Klimontovich's renormalized entropies are applied as three different complexity measures on gait data of patients with Parkinson's disease (PD) and healthy control group. We show that the renormalized entropy of variability of total reaction force of gait is a very efficient tool to compare patients with respect to disease severity. Moreover, it is a good risk predictor such that the sensitivity, i.e., the percentage of patients with PD who are correctly identified as having PD, increases from 25% to 67% while the Hoehn-Yahr stage increases from 2.5 to 3.0 (this stage goes from 0 to 5 as the disease severity increases). The renormalized entropy method for stride time variability of gait is found to correctly identify patients with a sensitivity of 80%, while the Shannon entropy and the Kullback-Leibler relative entropy can do this with a sensitivity of only 26.7% and 13.3%, respectively. (C) 2016 AIP Publishing LLC.

Dosyalar (144 Bytes)
Dosya adı Boyutu
bib-81ad39bd-da79-4622-8663-3b188863d636.txt
md5:f9f48fd5479d2c339243b2c034f4d764
144 Bytes İndir
29
5
görüntülenme
indirilme
Görüntülenme 29
İndirme 5
Veri hacmi 720 Bytes
Tekil görüntülenme 28
Tekil indirme 5

Alıntı yap