Dergi makalesi Açık Erişim

Differentially private nearest neighbor classification

   Gursoy, Mehmet Emre; Inan, Ali; Nergiz, Mehmet Ercan; Saygin, Yucel

Instance-based learning, and the k-nearest neighbors algorithm (k-NN) in particular, provide simple yet effective classification algorithms for data mining. Classifiers are often executed on sensitive information such as medical or personal data. Differential privacy has recently emerged as the accepted standard for privacy protection in sensitive data. However, straightforward applications of differential privacy to k-NN classification yield rather inaccurate results. Motivated by this, we develop algorithms to increase the accuracy of private instance-based classification. We first describe the radius neighbors classifier (r-N) and show that its accuracy under differential privacy can be greatly improved by a non-trivial sensitivity analysis. Then, for k-NN classification, we build algorithms that convert k-NN classifiers to r-N classifiers. We experimentally evaluate the accuracy of both classifiers using various datasets. Experiments show that our proposed classifiers significantly outperform baseline private classifiers (i.e., straightforward applications of differential privacy) and executing the classifiers on a dataset published using differential privacy. In addition, the accuracy of our proposed k-NN classifiers are at least comparable to, and in many cases better than, the other differentially private machine learning techniques.

Dosyalar (164 Bytes)
Dosya adı Boyutu
bib-53f73c4b-da2d-4fe4-804d-a38652ee0d16.txt
md5:3a018056fa45b8f23424d9c975b81159
164 Bytes İndir
46
4
görüntülenme
indirilme
Görüntülenme 46
İndirme 4
Veri hacmi 656 Bytes
Tekil görüntülenme 44
Tekil indirme 4

Alıntı yap