Dergi makalesi Açık Erişim

Spin currents of charged Dirac particles in rotating coordinates

   Dayi, O. F.; Yunt, E.

The semiclassical Boltzmann transport equation of charged, massive fermions in a rotating frame of reference, in the presence of external electromagnetic fields is solved in the relaxation time approach to establish the distribution function up to linear order in the electric field in rotating coordinates, centrifugal force and the derivatives. The spin and spin current densities are calculated by means of this distribution function at zero temperature up to the first order. It is shown that the nonequilibrium part of the distribution function yields the spin Hall effect for fermions constrained to move in a plane perpendicular to the angular velocity and magnetic field. Moreover it yields an analogue of Ohm's law for spin currents whose resistivity depends on the external magnetic field and the angular velocity of the rotating frame. Spin current densities in three-dimensional systems are also established. (C) 2018 Elsevier Inc. All rights reserved.

Dosyalar (132 Bytes)
Dosya adı Boyutu
bib-4bc342bb-d488-4ec0-929b-4e5699aa2704.txt
md5:5cf0346834a46fc10fd43e3852b15932
132 Bytes İndir
43
10
görüntülenme
indirilme
Görüntülenme 43
İndirme 10
Veri hacmi 1.3 kB
Tekil görüntülenme 39
Tekil indirme 10

Alıntı yap