Dergi makalesi Açık Erişim

xDBTagger: explainable natural language interface to databases using keyword mappings and schema graph

   Usta, Arif; Karakayali, Akifhan; Ulusoy, Ozgur

Recently, numerous studies have been proposed to attack the natural language interfaces to data-bases (NLIDB) problem by researchers either as a conventional pipeline-based or an end-to-end deep-learning-based solution. Although each approach has its own advantages and drawbacks, regardless of the approach preferred, both approaches exhibit black-box nature, which makes it difficult for potential users to comprehend the rationale behind the decisions made by the intelligent system to produce the translated SQL. Given that NLIDB targets users with little to no technical background, having interpretable and explainable solutions becomes crucial, which has been overlooked in the recent studies. To this end, we propose xDBTagger, an explainable hybrid translation pipeline that explains the decisions made along the way to the user both textually and visually. We also evaluate xDBTagger quantitatively in three real-world relational databases. The evaluation results indicate that in addition to being lightweight, fast, and fully explainable, xDBTagger is also competitive in terms of translation accuracy compared to both pipeline-based and end-to-end deep learning approaches.

Dosyalar (182 Bytes)
Dosya adı Boyutu
bib-1e4f47f1-5a7d-4f28-b3c9-05cd9ec38d63.txt
md5:e3ae5e2ca4d1b1452af370fe25dafc5f
182 Bytes İndir
6
1
görüntülenme
indirilme
Görüntülenme 6
İndirme 1
Veri hacmi 182 Bytes
Tekil görüntülenme 2
Tekil indirme 1

Alıntı yap