Yayınlanmış 1 Ocak 2010
| Sürüm v1
Dergi makalesi
Açık
ON INVARIANTS OF IMMERSIONS OF AN n-DIMENSIONAL MANIFOLD IN AN n-DIMENSIONAL PSEUDO-EUCLIDEAN SPACE
Oluşturanlar
Açıklama
Let En p be the n-dimensional pseudo-Euclidean space of index p and M(n, p) the group of all transformations of E(p)(n) generated by pseudo-orthogonal transformations and parallel translations. We describe the system of generators of the differential field of all M(n, p)-invariant differential rational functions of a map x : J -> E(p)(n) of an open subset J subset of E(p)(n). Using this result, we prove analogues of the Bonnet theorem for immersions of an n-dimensional C(infinity)-manifold J in E(p)(n). These analogues are given in terms of the pseudo-Riemannian metric, the volume form, and the connection on J induced by the immersion of J in E(p)(n).
Dosyalar
bib-00c4a4c2-a6b6-47c4-bafa-da06e4e36c2b.txt
Dosyalar
(181 Bytes)
| Ad | Boyut | Hepisini indir |
|---|---|---|
|
md5:1671577137c3a251052c7a93d12e097c
|
181 Bytes | Ön İzleme İndir |