Dergi makalesi Açık Erişim

Wavefront shaping assisted design of spectral splitters and solar concentrators

   Gun, Berk N.; Yuce, Emre

Spectral splitters, as well as solar concentrators, are commonly designed and optimized using numerical methods. Here, we present an experimental method to spectrally split and concentrate broadband light (420-875 nm) via wavefront shaping. We manage to spatially control white light using a phase-only spatial light modulator. As a result, we are able to split and concentrate three frequency bands, namely red (560-875 nm), green (425-620 nm), and blue (420-535 nm), to two target spots with a total enhancement factor of 715%. Despite the significant overlap between the color channels, we obtain spectral splitting ratios as 52%, 57%, and 66% for red, green, and blue channels, respectively. We show that a higher number of adjustable superpixels ensures higher spectral splitting and concentration. We provide the methods to convert an optimized phase pattern into a diffractive optical element that can be fabricated at large scale and low cost. The experimental method that we introduce, for the first time, enables the optimization and design of SpliCons, which is similar to 300 times faster compared to the computational methods.

Dosyalar (134 Bytes)
Dosya adı Boyutu
bib-4daee7ac-4652-481f-9303-38138e4fc6c6.txt
md5:900a2a7194a23e728a781fea3ed7a02a
134 Bytes İndir
19
3
görüntülenme
indirilme
Görüntülenme 19
İndirme 3
Veri hacmi 402 Bytes
Tekil görüntülenme 19
Tekil indirme 3

Alıntı yap