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UC modules with respect to a torsion theory

Seçil Çeken and Mustafa Alkan

Abstract

In this paper, we give some characterizations of modules M over a ring R such that every submodule

has a unique closure relative to a hereditary torsion theory on Mod-R by using the concept of τ -closed

submodule which was studied in [2]. We compare UC and τ -UC modules and examine the relationships

between them. We also give some examples of τ -UC and UC modules and submodules which have a unique

τ -closure and unique closure.
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1. Introduction

In this paper, R will denote an associative ring with identity and all modules will be unitary right R -
modules. In [8], Smith studied modules in which every submodule has a unique closure and called them UC

modules. Then in [3], the authors called a submodule N of a R -module M τ -essential if M/N is τ -torsion and
N is essential in M, where τ is a torsion theory on Mod-R . It is clear that a τ -essential submodule is essential.
In [3], the authors defined τ -UC-module as follows: given a submodule N of M, by a τ -closure of N in M,

they mean a τ -closed submodule K of M containing N such that N is τ -essential in K . A module M is
called a τ -UC-module provided every submodule has a unique τ -closure in M and they studied the properties
of this class. In [3], the concept of UC and τ -UC-modules are coincided if M is τ -torsion, in particular, these

two concepts are equivalent in τ = (Mod-R, 0). On the other hand, in [6], Pardo introduced the concept of

τ -large submodule which is not comparable with the essential submodule (see Example 2.4, 2.6). In this paper,
by using the concept of τ -large submodule, we study τ -closed submodule and define τ -UC modules which are
torsion theoretic analogue of UC modules and we give some examples (see Example 2.4, 2.6, 3.2 and 3.3) to

show that the new module class is different from module class discussed in [3].

Now we recall some fundamental concepts of torsion theory from [1], [5] and [9]. Let τ = (T ,F) be a
torsion theory on Mod-R. Modules in T will be called τ -torsion and modules in F will be called τ -torsion
free modules. Let M ∈ Mod-R. The τ -torsion submodule of M is defined to be the sum of all τ -torsion
submodules of M and denoted by τ (M). The τ -torsion class is T = {M ∈Mod-R : τ (M) = M} and the

τ -torsion free class F = {M ∈Mod-R : τ (M) = 0}. T is closed under homomorphic images, direct sums, and
extensions. F is closed under isomorphisms, submodules, direct products and extensions.
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In this paper, all torsion theories τ are assumed to be hereditary, that is we assume that submodules of
τ -torsion modules are τ -torsion.

If I is an idempotent ideal of R , then it is well known that I determines a hereditary torsion theory τI

with torsion class {M : MI = 0} . We refer to τI as the torsion theory corresponding to I. If τG is the Goldie

torsion theory, then τG is hereditary and the τG -torsion submodule τG(M) of a module M is the second singular

submodule of M. That is, τG(M) is the submodule Z2(M) of M such that Z2(M)/Z(M) = Z(M/Z(M)),

where for a module M, Z(M) denotes the singular submodule of M.

A submodule N of a module M is called τ -dense (τ -pure) in M if M/N is τ -torsion (τ -torsion free).

The set of all τ -dense right ideals of R will be denoted by Fτ(R). It is well known that τ (M) = {m ∈ M : (0 :

m) ∈ Fτ(R)}, where (0 : m) = {r ∈ R : mr = 0}. We let Pτ(M) denote the set of all τ -pure submodules of M.

It is known that Pτ (M) is closed under arbitrary intersections, τ (M) = ∩{N : N ≤ M, N ∈ Pτ (M)} and if N

is a τ -pure submodule of M , τ (N) = τ (M). The τ -pure closure of N in M, denoted by N c, is defined to be

the intersection of all the τ -pure submodules of M that contain N . It is well known that τ (M/N) = N c/N.

2. Preliminaries

In [6], Pardo introduced the concept of τ -large submodule. A submodule N of an R -module M is called

τ -large in M if, for W ≤ M , N ∩ W ⊆ τ (M) implies W ⊆ τ (M). We write N �τ M to denote that N is a
τ -large submodule of M .

It is clear that if M is a τ -torsion free module, then the concept of τ -large submodule coincides with
the concept of essential submodule, in particular, if τ = (0,Mod-R), then these two concepts are equivalent.

If τ = (Mod-R, 0), then every submodule of a module M is τ -large. More generally, every submodule of
a τ -torsion module M is τ -large in M . On the other hand, the set of τ -large submodules and essential
submodules of a module are unconnected. The submodule given in Example 2.4, is τ -large but not essential
and the submodule given in Example 2.6 is essential but not τ -large. It is also easy to check that every
τ -essential submodule is τ -large but the converse is not true (see Example 2.4).

We give the following proposition about the properties of τ -large submodules from Propositions 2.2, 2.3
and 2.4 in [6].

Proposition 2.1 Let M be an R -module and N, L ≤ M . Then

(1) N is τ -large in M if and only if N c is τ -large in M .

(2) If N is a τ -pure and τ -large submodule of M, then N is large in M .

(3) If N ⊆ L and N �τ M, then L �τ M .

(4) N �τ L �τ M if and only if N �τ M .

(5) If f : M → M ′ is an R -module homomorphism and W �τ M ′, then f−1(W ) �τ M .

Proposition 2.2 [2, Proposition 2.2] (1) Let L be a τ -large submodule of a module M . Then N ∩ L �τ N

for every N ≤ M .

(2) Let K ⊆ K′ and L ⊆ L′ be submodules of a module M such that K �τ K′ and L �τ L′ . Then

(K ∩ L) �τ (K′ ∩L′) .
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Definition 2.3 Let M be a module and K ≤ M. K is called a τ -closed submodule of M if whenever for
any submodule L of M, K �τ L ≤ M implies K = L. If N is a submodule of M such that K �τ N and
N is τ -closed in M then N is called a τ -closure of K in M. We write K ≤τ−c M to denote that K is a
τ -closed submodule of M.

Clearly, if M is a τ -torsion module, then M is the unique τ -closure of a submodule of itself. But
this result is not true for τ -closure of a submodule of M discussed in [3] (see Example 2.4). Moreover, a
non-τ -torsion module cannot be a τ -closure of a τ -torsion submodule. Because a τ -torsion submodule of
a non-τ -torsion module M cannot be τ -large in M. By Proposition 2.1-(2), it is also clear that if N is a
τ -pure and closed submodule of M then N is τ -closed in M . But there exist closed submodules which are
not τ -closed.

Example 2.4 Let M = Z/2Z ⊕ Z/23Z and N = Z(1 + 2Z, 2 + 23Z), then N is closed in M but it is not
τG -closed in M since M is τG -torsion, where τG is the Goldie torsion theory. It is clear that N is not essential
in M but it is τG -large in M .

Lemma 2.5 [2, Lemma 2.3] The τ -torsion submodule of a module M is τ -closed in M .

The following example can be found in [2].

Example 2.6 Let R =

⎡
⎣

F F F
0 F 0
0 0 F

⎤
⎦ , where F is a field. Consider the right R -module M := RR. If τI is

the torsion theory on Mod-R corresponding to the idempotent ideal I =

⎡
⎣

F F F
0 0 0
0 0 0

⎤
⎦ , that is TI = {N ∈Mod-

R : NI = 0}, then τI(M) =

⎡
⎣

0 F F
0 F 0
0 0 F

⎤
⎦ is a τ -closed submodule of M by Lemma 2.5 and it is easy to check

that τI (M) is essential in M . Thus τI(M) is a τ -closed submodule of M which is not closed.

Lemma 2.7 [2, Lemma 2.4] Let N be a τ -closed submodule of a module M . Then N is τ -pure in M .

Proposition 2.8 [2, Proposition 2.5] Every submodule of a module M has a τ -closure in M .

Lemma 2.9 [2, Lemma 2.6] Let B be a τ -closed submodule of a module M . If B ≤ K �τ M, then

K/B �τ M/B .

Lemma 2.10 (1) If K ≤ L ≤τ−c M then L/K ≤τ−c M/K.

(2) If K ≤ L, K ≤τ−c M and L/K ≤τ−c M/K then L ≤τ−c M.

Proof. (1) Let K ≤ L ≤τ−c M. Suppose that L ≤ N ≤ M such that L/K �τ N/K. Let π denote the

canonical map from N to N/K. Then π−1(L/K) = L �τ N by Proposition 2.1-(5). By hypothesis L = N

and so L/K = N/K.

(2) Let K ≤ L, K ≤τ−c M and L/K ≤τ−c M/K. Suppose that L �τ N ≤ M. By Lemma 2.9

L/K �τ N/K. By hypothesis, we have L/K = N/K and so L = N. �
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In [6], Pardo defined τ -complement submodules: A submodule B of a module M is said to be a τ -

complement of A in M if B is maximal with respect to the property A∩B ⊆ τ (M). A submodule C of M

is called a τ -complement submodule of M if it is a τ -complement of some submodule S of M.

By using a simple application of Zorn’s Lemma, we see that every submodule has τ -complement. It is
clear that if M is a τ -torsion free module then a submodule N of M is a τ -complement submodule of M if
and only if it is a complement submodule of M.

Proposition 2.11 [2, Proposition 2.11] Let M be a module and B ≤ M . Then B is a τ -complement
submodule of M if and only if it is a τ -closed submodule of M.

The following proposition can be found in [2]. But we give its proof here proof for completeness.

Proposition 2.12 Let M be a module with the submodules C ⊆ N . If C is τ -closed in N and N is τ -closed
in M , then C is τ -closed in M .

Proof. It is enough to prove for τ -complement submodules by Proposition 2.11.

Let C be a τ -complement of S in N and N be a τ -complement of T in M . We claim that C is a
τ -complement of S + T in M .

By Lemma 2.7 and Proposition 2.11, we have that N/C, M/N ∈ F and so M/C ∈ F . Then we get that

τ (N) = τ (M) and τ (M) ⊆ C . Firstly, we show that C ∩ (S + T ) ⊆ τ (M). Take an element x ∈ C ∩ (S + T )

and write x = s + t where s ∈ S and t ∈ T. Then x − s = t ∈ N ∩ T ⊆ τ (M) ⊆ C and so s ∈ C . Hence

x = s + t ∈ (C ∩ S) + (N ∩ T ) ⊆ τ (M) and we get that C ∩ (S + T ) ⊆ τ (M).

Next, we want to show that C is a maximal submodule of M with respect to the property C∩ (S + T ) ⊆
τ (M).

Let D be a submodule of M such that C is a proper submodule of D . In this case, we have two cases;

(i) Let D ∩ N �= C. Then since C is a τ -complement of S in N, we have that D ∩ N ∩ S = D ∩ S �

τ (N) = τ (M) and so D ∩ (S + T ) � τ (M).

(ii) Let D ∩ N = C . Then chose an element d ∈ D\N and so (N + dR) ∩ T � τ (M) since N is a

τ -complement of T in M . Thus we can chose an element t = n + dr /∈ τ (M) where t ∈ T, n ∈ N, r ∈ R .

If n ∈ C , then n + dr ∈ D and D ∩ T � τ (M). Thus D ∩ (S + T ) � τ (M).

If n /∈ C, then (C + nR) ∩ S � τ (N) = τ (M) and there are elements c ∈ C, s ∈ S, l ∈ R such that

c + nl = s /∈ τ (M). Hence we get that s− tl = (c + nl) − (n + dr)l ∈ D ∩ (S + T ) but s − tl /∈ τ (M).

If s− tl were in τ (M), then since τ (M) ⊆ N, we have that tl ∈ N ∩ T ⊆ τ (M). This is a contradiction

with s /∈ τ (M). Therefore, D ∩ (S + T ) � τ (M) and C is the maximal submodule with the property with

respect to C ∩ (S + T ) ⊆ τ (M). This completes the proof. �

3. τ -UC modules

Definition 3.1 An R -module M is called a τ -UC module provided every submodule has a unique τ -closure
in M.

379
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If M is a τ -torsion-free module, then τ -UC modules are precisely the UC modules. Every τ -torsion
module M is a τ -UC module. Because M is the unique τ -closure of every submodule of itself.

The following example shows that a submodule may have different unique closure and unique τ -closure
and so these two classes may be different. But they are equivalent when we consider the torsion theory
τ = (0,Mod-R).

Example 3.2 Consider the R -module M in Example 2.6. We have stated that τI (M) is a τ -closed submodule

of M and τI(M) � M . Thus the unique τ -closure of τI(M) is τI (M) but the unique closure of τI(M) is M.

The following example shows that a τ -UC module need not to be UC module discussed in [8] or τ -UC

module discussed in [3].

Example 3.3 Let p be any prime number and M = Z/p2Z ⊕Z/pZ. In [8], it was proved that M is not a UC

module and hence not τ -UC module discussed in [3]. Because these two concepts, discussed in [8] and [3], are
the same when the module is τ -torsion. But M is a τG -UC module as it is τG -torsion, where τG is the Goldie
torsion theory.

Lemma 3.4 Let M be a τ -UC module and let U, V and V ′ be submodules of M with V the τ -closure of U

in M and U �τ V ′. Then V ′ ⊆ V.

Proposition 3.5 The following statements are equivalent for a module M.

(1) M is a τ -UC module.

(2) If K �τ K′ and L �τ L′ then K + L �τ K′ + L′.

(3) If Ki is a τ -large submodule of a submodule Li of M for all i in an index set I, then
∑

i∈I Ki is

τ -large in
∑

i∈I Li.

(4) If K ∩ K′ �τ K, K ∩ K′ �τ K′ and L ∩ L′ �τ L, L ∩ L′ �τ L′, for submodules K, K′, L, L′ of

M, then (K + L) ∩ (K′ + L′) �τ K + L and (K + L) ∩ (K′ + L′) �τ K′ + L′.

(5) If K ∩ L �τ L then K �τ K + L.

Proof. (1) ⇒ (2) Let H denote the τ -closure of K + L in M . Let G be a τ -closure of K in H. By

Proposition 2.12, it follows that G is τ -closed in M. By Lemma 3.4, we get that K′ ⊆ G and so K′ ⊆ H.

Similarly L′ ⊆ H. Since K′ + L′ ⊆ H and K + L �τ H, we get that K + L �τ K′ + L′.

(2) ⇒ (3) Let (
∑

i∈I Ki)∩W ⊆ τ (
∑

i∈I Li) for W ≤
∑

i∈I Li. Let x ∈ W. There exists a finite subset F

of I and xi ∈ Li such that x =
∑

i∈F xi . Then xR∩ (
∑

i∈F Ki) ⊆ τ (
∑

i∈F Li). By (2),
∑

i∈F Ki �τ

∑
i∈F Li.

Hence xR ⊆ τ (
∑

i∈F Li) and x ∈ τ (
∑

i∈I Li). This shows that
∑

i∈I K �τ

∑
i∈I Li.

(3) ⇒ (4) Let N = (K ∩ K′) + (L ∩ L′). Then we get N �τ K + L and N �τ K′ + L′. Since

N ⊆ (K + L) ∩ (K′ + L′), we get that (K + L)∩ (K′ + L′) �τ K + L and (K + L) ∩ (K′ + L′) �τ K′ + L′ by
Proposition 2.1.

(4) ⇒ (5) Suppose that K ∩ L �τ L. Since, K ∩ L �τ K ∩ L and K ∩ K �τ K, we get that

(K ∩ L) + K = K �τ K + L by (4).

(5) ⇒ (1) Let K and K′ be τ -closures of a submodule N of M. Then K∩K′ �τ K′ and so K �τ K+K′

and hence K = K +K′. Thus K′ ⊆ K. Similarly K ⊆ K′ and hence this shows that M is a τ -UC module. �
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Theorem 3.6 The following statements are equivalent for a module M.

(1) M is a τ -UC module.

(2) If K ⊆ L are submodules of M and K′ is a τ -closure of K in M, then there exists a τ -closure L′

of L in M such that K′ ⊆ L′.

(3) If K is a τ -closed submodule of M then K ∩N is a τ -closed submodule of N, for every submodule
N of M.

(4) If K and L are τ -closed submodules of M then K ∩ L is a τ -closed submodule of M.

Proof. (1) ⇒ (2) By Proposition 3.5 we get that L = K + L �τ K′ + L. Let L′ be a τ -closure of K′ + L

in M. Then L′ is a τ -closure of L in M and K′ ⊆ L′.

(2) ⇒ (3) Let L be a τ -closure of K∩N in N and L′ be a τ -closure of L in M. Then L′ is a τ -closure

of K ∩ N in M. Since K is τ -closed in M we have L′ ⊆ K by (2). Hence L ⊆ K ∩ N and so K ∩ N = L.

(3) ⇒ (4) Suppose that K and L are τ -closed submodules of M . By (3), K ∩ L is τ -closed in L . By
Proposition 2.12, it follows that K ∩ L is τ -closed in M.

(4) ⇒ (1) Let K and L be τ -closures of a submodule N of M. Then N �τ K ∩L . By Proposition 2.1

we get that K ∩ L �τ K and K ∩ L �τ L. By (4), K ∩ L is τ -closed in M. Hence K ∩ L = K = L and so
M is a τ -UC module. �

Theorem 3.7 M is a τ -UC module if and only if every submodule of M is a τ -UC module.

Proof. First suppose that M is τ -UC module. Let N ≤ M and K ≤ N. Suppose that K �τ T ≤τ−c N

and K �τ T ′ ≤τ−c N. By Proposition 3.5, we get that K �τ T +T ′. By Proposition 2.1-(3), T �τ T +T ′ and

T ′ �τ T + T ′. Thus we get that T + T ′ = T = T ′.

Conversely suppose that every submodule of M is a τ -UC module. Let K, L ≤ M, K �τ K′ ≤ M and
L �τ L′ ≤ M . Let W ≤ K′ + L′ and W ∩ (K + L) ⊆ τ (K′ + L′). Take an element x = y + z ∈ W where

y ∈ K′ and z ∈ L′ . Let N = yR + zR. Note that K ∩ N �τ K′ ∩ N and L ∩ N �τ L′ ∩ N. Since N is
τ -UC we get that K ∩ N + L ∩ N �τ K′ ∩ N + L′ ∩ N by Proposition 3.5. Since xR ∩ (K ∩ N + L ∩ N) ⊆
τ (K′ + L′)∩ (K′ ∩N + L′ ∩N) = τ (K′ ∩N + L′ ∩N) we have xR ⊆ τ (K′ ∩N + L′ ∩N) ⊆ τ (K′ + L′). Hence

x ∈ τ (K′ + L′) and so W ⊆ τ (K′ + L′). It follows that K + L �τ K′ + L′. By Proposition 3.5, M is a τ -UC
module. �

Proposition 3.8 If M is a τ -UC module then M/K is a UC module for every K ≤τ−c M.

Proof. Let K ≤ L ≤ M, K ≤ N ≤ M such that L/K ≤τ−c M/K and N/K ≤τ−c M/K. By Lemma 2.10,
L ≤τ−c M and N ≤τ−c M. By Theorem 3.6, it follows that N ∩ L ≤τ−c M and hence by Lemma 2.10, we

obtain that (N ∩L)/K = (N/K) ∩ (L/K) ≤τ−c M/K and so M/K is a τ -UC module by Theorem 3.6. Since

M/K is τ -torsion-free, it is a UC module. �

Definition 3.9 A submodule K of a module M is called τ -R - closed if K ∩mR is not τ -large in mR for all
m ∈ M\K. We write K ≤τ−r M to denote that K is a τ -R - closed submodule of M.
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Lemma 3.10 (1) If K ≤τ−r M, then K ≤τ−c M.

(2) If Ki ≤τ−r M (i ∈ I), then ∩i∈IKi ≤τ−r M.

Proof. (1) Let K ≤τ−r M. Suppose that K �τ L ≤ M . Let x ∈ L. Then K ∩ xR �τ xR by Proposition
2.2 and so x ∈ K. Thus L = K.

(2) Let K = ∩i∈IKi and m ∈ M\K. Then m /∈ Ki for some i ∈ I. By hypothesis, Ki∩mR �τ mR and

so K ∩ mR �τ mR . It follows that K = ∩i∈IKi ≤τ−r M . �

Proposition 3.11 The following statements are equivalent for a module M.

(1) M is a τ -UC module.

(2) If K ≤τ−c M then K ≤τ−r M.

(3) If Ki ≤τ−c M (i ∈ I) then ∩i∈IKi ≤τ−c M.

Proof. (1) ⇒ (2) Suppose that M is a τ -UC module. Let K ≤τ−c M and m ∈ M\K. Then K �τ K+mR .

By Proposition 3.5 (1) ⇒ (5), we get that K ∩ mR �τ mR and so K ≤τ−r M.

(2) ⇒ (3) By Lemma 3.10 (1), (2).

(3) ⇒ (1) By (4) ⇒ (1) of Theorem 3.6. �

Corollary 3.12 M is a τ -UC module if and only if the following condition (∗) holds:

(∗) If Ki ≤τ−c Li ≤ M (i ∈ I) then ∩i∈IKi ≤τ−c ∩i∈ILi.

Proof. First suppose that M is a τ -UC module. Let Ki ≤τ−c Li ≤ M (i ∈ I) and L = ∩i∈ILi. Note

that L and Li (i ∈ I) are all τ -UC modules by Theorem 3.7. By (1) ⇒ (3) of Theorem 3.6, we get that

Ki∩L ≤τ−c L (i ∈ I) and hence ∩i∈IKi = ∩i∈I(Ki∩L) ≤τ−c L by Proposition 3.11. The converse is obtained
by Theorem 3.6. �

Proposition 3.13 M is a τ -UC module if and only if for each submodule N of M, N∗
τ = {m ∈ M :

N ∩mR �τ mR} is a submodule of M. In this case, N∗
τ = {m ∈ M : N �τ (N + mR)} and N∗

τ is the unique
τ -closure of N.

Proof. Suppose that M is a τ -UC module. Let N ≤ M. By (1) ⇒ (5) of Proposition 3.5, m ∈ N∗
τ if and

only if N �τ N +mR. Let m1 , m2 ∈ N∗
τ and r ∈ R. Then N �τ N +m1R and N �τ N +m2R. By (1) ⇒ (2)

of Proposition 3.5, we get that N �τ N +m1R+m2R. and so N �τ N +(m1 + m2r)R by Proposition 2.1-(4).
Hence m1 + m2r ∈ N∗

τ and then N∗
τ ≤ M.

Conversely suppose that N∗
τ ≤ M for any N ≤ M. Clearly N ≤ N∗

τ . We claim that N �τ N∗
τ . Let

W ≤ N∗
τ and W ∩N ⊆ τ (N∗

τ ). Take m ∈ W. We have N ∩mR �τ mR and so (N ∩mR)∩mR ⊆ τ (N∗
τ )∩mR =

τ (mR). It follows that mR = τ (mR) and m ∈ τ (N∗
τ ) and hence N �τ N∗

τ . Suppose that N �τ K ≤τ−c M .

Let k ∈ K. Then N ∩ kR �τ kR by Proposition 2.2-(1) and so k ∈ N∗
τ . Thus N ≤ K ≤ N∗

τ . We get that
K �τ N∗

τ by Proposition 2.1. It follows that K = N∗
τ . Thus N∗

τ is the unique τ -closure of N. �

A module M is called an extending module if every closed submodule is a direct summand of M .
Various properties of extending modules can be found in [4]. In [2] the authors introduced the concept of
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τ -extending module which is a generalization of extending module. A module M is said to be τ -extending
if every τ -closed submodule of M is a direct summand of M . It is easily seen that M is τ -extending if and
only if every submodule of M is τ -large in a direct summand of M .

Lemma 3.14 [2, Lemma 3.2] Any direct summand of a τ -extending module is τ -extending.

Lemma 3.15 Let M = A ⊕ B for some submodules A, B of M. If A �τ M then B ⊆ τ (M).

Proof. Since A �τ M , A ∩ B = 0 �τ B . Thus B ⊆ τ (M). �

The following theorem is a generalization of [7, Theorem 3.1].

Theorem 3.16 Let M be a τ -UC module such that M = ⊕i∈IMi is the direct sum of modules Mi (i ∈ I),
for some non-empty index set I. Then the following statements are equivalent.

(1) M is τ -extending.

(2) There exists i ∈ I such that Mi is τ -extending and every τ -closed submodule K of M with

K ∩ Mi ⊆ τ (M) is a direct summand.

(3) There exists i ∈ I such that Mi is τ -extending and every τ -complement of Mi in M is a τ -extending
module and a direct summand of M.

(4) The module Mi is τ -extending for each i ∈ I and every τ -closed submodule L of M with L∩Mi ⊆
τ (M) (i ∈ I) is a direct summand of M.

Proof. (1) ⇒ (2) It is clear by Lemma 3.14 and the hypothesis.

(2) ⇒ (3) Let L be a τ -complement of Mi in M. It follows that L is a direct summand of M. Let N

be a τ -closed submodule of L . By Proposition 2.12, we get that N is a direct summand of M, and hence also
of L. Thus L is τ -extending.

(3) ⇒ (1) Let H be a τ -closed submodule of M. By Theorem 3.6, we get that H ∩ Mi is a τ -closed

submodule of Mi. By (3), H ∩Mi is a direct summand of Mi and hence also of M. Thus M = (H ∩Mi)⊕H ′

for some H ′ ≤ M. Now H = (H ∩ Mi) ⊕ (H ∩ H ′) and there exists a τ -closed submodule K of H such that

H∩H ′ �τ K. It is easily seen that K = (H∩H ′)⊕(K∩H∩Mi). We have K∩Mi = (K∩H∩Mi)⊕(H∩H ′∩Mi) =

K ∩H ∩Mi . By Lemma 3.15, it follows that K ∩Mi ⊆ τ (M). By Zorn’s Lemma, there exists a τ -complement
L of Mi in M such that K ≤ L. Moreover K is τ -closed in M and hence K is τ -closed in L by Proposition
2.12. Applying (3), we see that K is a direct summand of the τ -extending module L and L is a direct

summand of M. Hence K is a direct summand of M and so H ∩H ′ is a direct summand of M. It follows that
H is a direct summand of M.

(1) ⇒ (4) By Lemma 3.14.

(4) ⇒ (1) Let P be a τ -closed submodule of M. By Theorem 3.6, we get that P ∩ Mi is a τ -closed

submodule of Mi for each i ∈ I. As Mi is τ -extending, it follows that Mi = (P ∩Mi)⊕M ′
i for some M ′

i ≤ Mi.

Let M ′ = ⊕i∈IM ′
i , P ′ = ⊕i∈I(P ∩Mi). Then M = P ′ ⊕ M ′ , P ′ ≤ P and so P = P ′ ⊕ (P ∩M ′). Let K be a

τ -closed submodule of P such that P ∩M ′ �τ K. Then K = (P ∩M ′)⊕ (K ∩ P ′) and so K ∩ P ′ ⊆ τ (M) by
Lemma 3.15.

We claim that K ∩ Mi ⊆ τ (M). Take x ∈ K ∩ Mi and write x = y + z , where y ∈ P ∩ M ′,

z ∈ K ∩ P ′. Then x − y = z ∈ Mi + P ∩ M ′. Since K ∩ P ′ ⊆ τ (M) and Mi ∩ P ∩ M ′ = 0 we get that
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(0 : z) = (0 : x − y) = (0 : x) ∩ (0 : −y) ∈ Fτ(R). It follows that (0 : x) ∈ Fτ (R) and so x ∈ τ (M). Thus

K ∩Mi ⊆ τ (M) and K is τ -closed by Proposition 2.12. By (4), K is a direct summand of M . It follows that

P ∩ M ′ is a direct summand of M ′. Thus P is a direct summand of M. �

Finally we give the following theorem to sum up our results about τ -UC modules.

Theorem 3.17 The following statements are equivalent for a module M.

(1) M is a τ -UC module.

(2) If K �τ K′ and L �τ L′ , for submodules K, K′, L, L′ of M, then K + L �τ K′ + L′.

(3) If Ki is a τ -large submodule of a submodule Li of M for all i in an index set I, then
∑

i∈I Ki is

τ -large in
∑

i∈I Li.

(4) If K ∩ K′ �τ K, K ∩ K′ �τ K′ and L ∩ L′ �τ L, L ∩ L′ �τ L′, for submodules K, K′, L, L′ of

M, then (K + L) ∩ (K′ + L′) �τ K + L and (K + L) ∩ (K′ + L′) �τ K′ + L′.

(5) If K ∩ L �τ L for submodules K, L of M, then K �τ K + L.

(6) If K ⊆ L are submodules of M and K′ is a τ -closure of K in M, then there exists a τ -closure L′

of L in M such that K′ ⊆ L′.

(7) If K is a τ -closed submodule of M, then K ∩N is a τ -closed submodule of N, for every submodule
N of M.

(8) If K and L are τ -closed submodules of M, then K ∩ L is a τ -closed submodule of M.

(9) The intersection of any collection of τ -closed submodules of M is τ -closed.

(10) If Kλ ⊆ Lλ (λ ∈ Λ) are submodules of M such that Kλ is τ -closed in Lλ for all λ in Λ, then
∩λ∈ΛKλ is τ -closed in ∩λ∈ΛLλ.

(11) Every submodule of M is a τ -UC module.

(12) Every τ -closed submodule of M is τ -R -closed.

(13) For every submodule N of M , N∗
τ = {m ∈ M : N ∩mR �τ mR} is a submodule of M.

In this case, for each submodule N of M , N∗
τ = {m ∈ M : N �τ N + mR} and N∗

τ is the unique
τ -closure of N.
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