Dergi makalesi Açık Erişim

Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells

   Oran, D. C.; Lokumcu, T.; Inceoglu, Y.; Akolpoglu, M. B.; Albayrak, O.; Bal, T.; Kurtoglu, M.; Erkan, M.; Can, F.; Bagci-Onder, T.; Kizilel, S.

Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic beta cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients' own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward the implantation site in vivo. This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.

Dosyalar (295 Bytes)
Dosya adı Boyutu
bib-9dbec385-cd87-4e9c-9604-610d5dacc99f.txt
md5:1a05516b46ed135294fa06be826d95c3
295 Bytes İndir
37
6
görüntülenme
indirilme
Görüntülenme 37
İndirme 6
Veri hacmi 1.8 kB
Tekil görüntülenme 35
Tekil indirme 6

Alıntı yap