Dergi makalesi Açık Erişim
Pashaev, Oktay K.; Nalci, Sengul
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Pashaev, Oktay K.</dc:creator> <dc:creator>Nalci, Sengul</dc:creator> <dc:date>2014-01-01</dc:date> <dc:description>We introduce a new class of complex functions of complex argument which we call q-analytic functions. These functions satisfy q-Cauchy-Riemann equations and have real and imaginary parts as q-harmonic functions. We show that q-analytic functions are not the analytic functions. However some of these complex functions fall in the class of generalized analytic functions. As a main example we study the complex q-binomial functions and their integral representation as a solution of the D-bar problem. In terms of these functions the complex q-analytic fractal, satisfying the self-similar q-difference equation is derived. A new type of quantum states as q-analytic coherent states and corresponding q-analytic Fock-Bargmann representation are constructed. As an application, we solve quantum q-oscillator problem in this representation, and show that the wave functions of quantum states are given by complex q-binomials.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/67095</dc:identifier> <dc:identifier>oai:zenodo.org:67095</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL 47(4)</dc:source> <dc:title>q-analytic functions, fractals and generalized analytic functions</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 39 |
| İndirme | 10 |
| Veri hacmi | 1.6 kB |
| Tekil görüntülenme | 31 |
| Tekil indirme | 10 |