Dergi makalesi Açık Erişim

q-analytic functions, fractals and generalized analytic functions

Pashaev, Oktay K.; Nalci, Sengul


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/67095</identifier>
  <creators>
    <creator>
      <creatorName>Pashaev, Oktay K.</creatorName>
      <givenName>Oktay K.</givenName>
      <familyName>Pashaev</familyName>
      <affiliation>Izmir Inst Technol Urla Izmir, Dept Math, TR-35430 Izmir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Nalci, Sengul</creatorName>
      <givenName>Sengul</givenName>
      <familyName>Nalci</familyName>
      <affiliation>Izmir Inst Technol Urla Izmir, Dept Math, TR-35430 Izmir, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Q-Analytic Functions, Fractals And Generalized Analytic Functions</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2014</publicationYear>
  <dates>
    <date dateType="Issued">2014-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/67095</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1088/1751-8113/47/4/045204</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We introduce a new class of complex functions of complex argument which we call q-analytic functions. These functions satisfy q-Cauchy-Riemann equations and have real and imaginary parts as q-harmonic functions. We show that q-analytic functions are not the analytic functions. However some of these complex functions fall in the class of generalized analytic functions. As a main example we study the complex q-binomial functions and their integral representation as a solution of the D-bar problem. In terms of these functions the complex q-analytic fractal, satisfying the self-similar q-difference equation is derived. A new type of quantum states as q-analytic coherent states and corresponding q-analytic Fock-Bargmann representation are constructed. As an application, we solve quantum q-oscillator problem in this representation, and show that the wave functions of quantum states are given by complex q-binomials.</description>
  </descriptions>
</resource>
39
10
görüntülenme
indirilme
Görüntülenme 39
İndirme 10
Veri hacmi 1.6 kB
Tekil görüntülenme 31
Tekil indirme 10

Alıntı yap