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Derya KESKİN TÜTÜNCÜ1, Nil ORHAN ERTAŞ2,∗, Patrick F. SMITH3, Rachid TRIBAK4

1Department of Mathematics, Hacettepe University, Beytepe, Ankara, Turkey
2Department of Mathematics, Karabük University, Karabük, Turkey
3Department of Mathematics, Glasgow University, Glasgow, Scotland

4Regional Center for Career Education and Training (CRMEF)-Tangier, Tangier, Morocco

Received: 05.10.2012 • Accepted: 25.11.2013 • Published Online: 25.04.2014 • Printed: 23.05.2014

Abstract: The submodule Z(M) = ∩{N | M/N is small in its injective hull} was introduced by Talebi and Vanaja

in 2002. A ring R is said to have property (P ) if Z(M) is a direct summand of M for every R -module M . It is

shown that a commutative perfect ring R has (P ) if and only if R is semisimple. An example is given to show that

this characterization is not true for noncommutative rings. We prove that if R is a commutative ring such that the class

{M ∈ Mod−R | ZR(M) = 0} is closed under factor modules, then R has (P ) if and only if the ring R is von Neumann

regular.
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1. Introduction

Throughout this paper all rings have identity and all modules are unital right modules. Let R be a ring and

M an R -module. A submodule L of M is called a small submodule (notation L ≪ M ) if M ̸= L + N

for any proper submodule N of M . The module M is said to be small if it is a small submodule of some

R -module; equivalently, M is small in its injective hull. In [13], Talebi and Vanaja introduced the submodule

Z(M) = ∩{U ≤ M | M/U is small} . If Z(M) = 0 (Z(M) = M ), then the module M is called cosingular

(noncosingular).

If for every R -module M , Z(M) is a direct summand of M , we will say that R has property (P ). The

aim of this paper is to shed some light on the structure of rings having (P ). Note that the rings satisfying the

dual of our condition (P ), namely those whose singular submodules Z(M) are direct summands, have been

studied in [2] and [3] extensively.

In Section 2 we present some properties of rings having (P ). It is shown that the class of rings having (P )

is closed under finite products. We also prove that if R is a commutative ring such that the class of cosingular

modules is closed under factor modules, then R has (P ) if and only if the ring R is von Neumann regular.

Section 3 deals with the structure of perfect rings having (P ). We show that a commutative perfect ring

R has (P ) if and only if R is semisimple. An example is given to show that this characterization is not true

for noncommutative rings.
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2. Some properties of rings having (P )

Proposition 2.1 The following are equivalent for a module M :

(i) Z(M) is a direct summand of M ;

(ii) M is a direct sum of a cosingular summodule and a noncosingular submodule.

In this case Z(M) is the largest noncosingular submodule of M .

Proof (i) ⇒ (ii) Let N be a submodule of M such that M = Z(M)⊕N . By [13, Proposition 2.1(7)], N is

cosingular. Since Z(M) = Z(Z(M))⊕Z(N) (by [13, Proposition 2.1(4)]), we have Z(M) = Z(Z(M)). Hence,

Z(M) is noncosingular. This proves the result.

(ii) ⇒ (i) Let N be a cosingular submodule of M and let K be a noncosingular submodule of M such

that M = N ⊕K . By [13, Proposition 2.1(4)], Z(M) = Z(N)⊕Z(K). Thus, Z(M) = K is a direct summand

of M .

For the last statement: if L is a noncosingular submodule of M , then L = Z(L) ⊆ Z(M). 2

Example 2.2 By applying the last result and some results of [13], we can get some examples of rings having

property (P ).

(1) By [13, Proposition 2.5], if R is a cosemisimple ring, then every R -module is noncosingular. Therefore,

R has property (P ).

(2) If R is a ring such that every cosingular R -module is projective, then R has property (P ) by [13,

Theorem 3.8(4)].

Proposition 2.3 For any ring R the following conditions are equivalent:

(1) R has (P );

(2) Every R -module is a direct sum of a noncosingular module and a cosingular module;

(3) (a) If N is a noncosingular submodule of a module M such that M/N is cosingular, then N is a

direct summand of M , and

(b) The preradical Z is idempotent.

Proof (1) ⇔ (2) By Proposition 2.1.

(1) ⇒ (3)(a) By (1), Z(M)⊕ L = M for some submodule L ≤ M . Since Z(M/N) = 0, Z(M) ⊆ N by

[13, Proposition 2.1(7)]. Then N = Z(M)⊕ (L ∩N) and M = N + L . As M/Z(M) ∼= L , we have Z(L) = 0.

Hence, Z(N ∩ L) = 0. On the other hand, since L ∩N is a direct summand of N , L ∩N is noncosingular. It

follows that Z(N ∩ L) = N ∩ L = 0. Thus, M = N ⊕ L .

(1) ⇒ (3)(b) By Proposition 2.1.

(3) ⇒ (1) Let M be any R -module. By [13, Proposition 2.1], we have Z(M/Z(M)) = 0. Moreover, we

have Z(M) = Z
2
(M) by (b). Therefore, Z(M) is a direct summand of M by (a). 2

Corollary 2.4 Consider the following conditions:

(i) For any N ≤ M ∈ Mod−R , we have Z(N) = N ∩ Z(M) ;

650
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(ii) The class {M ∈ Mod−R | Z(M) = M} is closed under submodules.

Then (i) ⇒ (ii) and if R has (P ), then (ii) ⇒ (i).

Proof By Proposition 2.3 and [4, Proposition 6.9(1)]. 2

Corollary 2.5 Consider the following conditions for a ring R :

(i) R has (P );

(ii) Ext(S,M) = 0 for every cosingular module S and noncosingular module M .

Then (i) implies (ii). If the preradical Z is idempotent, then (ii) implies (i).

Note that (ii) does not imply (i) in the above corollary. Consider the ring Z . By Lemma 4.12 of [8], a

Z-module M is noncosingular if and only if it is injective. So condition (ii) is satisfied. But the ring Z does

not satisfy (P ) (see Proposition 2.6).

Proposition 2.6 Let R be a Dedekind domain. The following are equivalent:

(i) R has (P );

(ii) R is a field.

Proof (i) ⇒ (ii) Let M be any module. By [15, Bemerkung 1.7 and Satz 2.10], there exists an R -module N

such that M ≤ N and M = Z
2
(N). By assumption, we also have that N = Z(N) ⊕K for some submodule

K of N . Then Z(N) = Z
2
(N) ⊕ Z(K) = M ⊕ Z(K) = M . Thus, M is noncosingular. By [8, Lemma 4.12],

M is also injective. It follows that R is semisimple. Thus, R is a field.

(ii) ⇒ (i) This is clear. 2

Lemma 2.7 Let R = R1 ⊕R2 where Ri (i = 1, 2) are nonzero 2-sided ideals of R . Let M be an R -module.

Then:

(1) M = MR1 ⊕MR2 and MRi (i = 1, 2) can be regarded as an Ri -module such that the submodules

of MRi are the same whether it is regarded as an Ri -module or as an R-module.

(2)(a) If E is an injective R -module, then ERi is an injective Ri -module.

(b) If Ei is an injective Ri -module, then Ei is an injective R -module for the following multiplication:

xi(r1 + r2) = xiri , where rj ∈ Rj (j = 1, 2) and xi ∈ Ei .

(3)(a) Let Ni be a submodule of the R -module MRi . Then MRi/Ni is a small Ri -module if and only

if MRi/Ni is a small R-module.

(b) We have ZRi(MRi) = ZR(MRi) for i = 1, 2 .

(4) If {M ∈ Mod−R | ZR(M) = 0} is closed under homomorphic images, then so is {M ∈ Mod−Ri |
ZRi(M) = 0} .

Proof (1) This is obvious.

(2) (a) Let Xi be an Ri -module with ERi ⊆ Xi . Clearly Xi is an R -module and ERi is an injective

R -module. Thus, ERi is a direct summand of Xi , and so ERi is an injective Ri -module.
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(b) Let X be an R -module with Ei ⊆ X . Then EiRi ⊆ XRi . Hence, Ei ⊆ XRi . By hypothesis, Ei is

a direct summand of XRi . Since XRi is a direct summand of X , Ei is a direct summand of X . It follows

that Ei is an injective R -module.

(3) (a) Assume that MRi/Ni is a small Ri -module. Thus there is an injective Ri -module Ei containing

MRi/Ni such that MRi/Ni ≪ Ei . By (2), Ei is an injective R -module. Thus, MRi/Ni is a small R -module.

Conversely, suppose that MRi/Ni is a small R -module. Thus there is an injective R -module E

containing MRi/Ni such that MRi/Ni ≪ E . Therefore, MRi/Ni ≪ ERi . Since ERi is an injective Ri -

module, MRi/Ni is a small Ri -module.

(b) By (a).

(4) This follows from (3)(b). 2

Proposition 2.8 Let R = R1 ⊕R2 be a ring decomposition. Then R has property (P ) if and only if R1 and

R2 both have property (P ).

Proof Let M be an R -module. By assumption, we have M = MR1 ⊕ MR2 such that MRi is an Ri -

module for i = 1, 2. Note that ZRi(MRi) = ZR(MRi) for i = 1, 2 (see Lemma 2.7). Then ZR(M) =

ZR(MR1) ⊕ ZR(MR2) = ZR1(MR1) ⊕ ZR2(MR2). Since Ri has property (P ), then ZRi(MRi) is a direct

summand of MRi for i = 1, 2. Hence, R has property (P ). Conversely, consider an Ri -module Mi . Then

Mi can be regarded as an R -module for the following multiplication: xi(r1 + r2) = xiri , where rj ∈ Rj

(j = 1, 2) and xi ∈ Mi and the submodules of Mi are the same over R and over Ri (i = 1, 2). Hence,

ZRi(Mi) = ZRi(MiRi) = ZR(MiRi) = ZR(Mi) by Lemma 2.7. Thus, if R has property (P ), then R1 and R2

have property (P ). 2

Proposition 2.9 Let R be a commutative ring having property (P ). Then R = R1 ⊕ R2 such that R1 is a

von Neumann regular ring and R2 is a ring having property (P ) with Z(R2) = 0 .

Proof By Proposition 2.1, R = R1 ⊕R2 such that Z(R1) = R1 and Z(R2) = 0. By Proposition 2.8, R1 and

R2 both have property (P ). By [13, Corollary 2.6], R1 is a cosemisimple ring. But R1 is commutative. Then

R1 is a von Neumann regular ring. This completes the proof. 2

In the sequel, let CR = {MR | Z(M) = 0} denote the class of cosingular R -modules.

Lemma 2.10 If the class CR is closed under homomorphic images, then Z(R) ̸= 0 .

Proof Assume that Z(R) = 0. Then Z(R(I)) = 0 for every index set I by [13, Proposition 2.1(4)]. By

hypothesis, every module is cosingular, a contradiction (see [13, Proposition 2.8]). 2

Proposition 2.11 Let R = R1 ⊕R2 be a ring decomposition. Assume that CR is closed under homomorphic

images. Then ZR(Ri) ̸= 0 .

Proof Suppose that ZR(R1) = 0. By Lemma 2.7, we have ZR1(R1) = 0. Since CR is closed under homo-

morphic images, CR1
is closed under homomorphic images (see Lemma 2.7). By Lemma 2.10, ZR1(R1) ̸= 0, a

contradiction. 2
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Theorem 2.12 Let R be a commutative ring such that CR is closed under homomorphic images. The following

are equivalent:

(1) R has (P );

(2) RR = R1 ⊕R2 such that R1 ∈ CR and Z(R2) = R2 ;

(3) R is von Neumann regular.

Proof (1) ⇒ (2) This is clear.

(2) ⇒ (3) By Proposition 2.11, we have R1 = 0. Hence, Z(R) = R . Thus R is cosemisimple by [13,

Corollary 2.6]. Since R is commutative, R is von Neumann regular.

(3) ⇒ (1) By [13, Proposition 2.5], every module is noncosingular. Thus R has (P ). 2

3. When perfect rings have property (P )

Lemma 3.1 Let R be a right perfect ring with (P ) . Then the class CR is closed under homomorphic images.

Proof Since R is right perfect, every R -module is amply supplemented. Let M be a cosingular module and let

N ≤ M . By [13, Theorem 3.5], Z
2
(M/N) = (Z

2
(M)+N)/N . But Z

2
(M/N) = Z(M/N) and Z

2
(M) = Z(M)

by Proposition 2.3. Then Z(M/N) = (Z(M) +N)/N = 0. 2

Note that r(J) and l(J) will denote the right and left annihilator of the Jacobson radical J of a ring

R , respectively.

Proposition 3.2 Let R be a right perfect ring with Jacobson radical J . Then for any R -module M , we have

Z(M) = Mr(J) .

Proof Let M be any module. By [4, 6.14], [13, Proposition 2.1(3)], and Lemma 3.1, we have Z(M) =

MZ(RR). Therefore Z(M) = Mr(J) by [12, Proposition 2.6]. 2

Theorem 3.3 Let R be a right perfect ring such that r(J) = l(J) . The following are equivalent:

(1) R has (P );

(2) r(J) is injective;

(3) R is semisimple.

Proof Note that since r(J) = l(J), we have r(J) = Soc(RR) = Soc(RR) by [1, Proposition 15.17].

(1) ⇒ (2) By Proposition 3.2, Z(RR) = Soc(RR). Since R has (P ), Soc(RR) is a noncosingular direct

summand of RR . Thus, Soc(RR) = ⊕n
i=1Si for some simple right ideals Si (1 ≤ i ≤ n) of R . By [13,

Proposition 2.1(4)], every Si (1 ≤ i ≤ n) is noncosingular. So every Si (1 ≤ i ≤ n) is injective. Hence,

r(J) = Soc(RR) is injective.

(2) ⇒ (3) Suppose that R is not semisimple. By (2), there is a nonzero right ideal I of R such that

R = Soc(RR)⊕ I . By [1, Theorem 28.4], Soc(I) ̸= 0, a contradiction.

(3) ⇒ (1) This is clear. 2
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Corollary 3.4 Let R be a commutative perfect ring. Then R has (P ) if and only if R is semisimple.

Proof This follows from Theorem 3.3. 2

Proposition 3.5 Let R be a right perfect ring having (P ). Then R has a simple injective module.

Proof Assume that R has no simple injective modules. Let M be any R -module. By Proposition 2.3, we

have Z(M) = Z
2
(M). By [13, Theorem 3.8(3)], we have Z

2
(M) = 0. Thus, Z(M) = 0 for every module M ,

a contradiction (see [13, Proposition 2.8]). 2

Lemma 3.6 Let R be a local ring with maximal right ideal m such that R/m is a nonsmall module. Then R

has (P ) if and only if R is a division ring.

Proof (⇒) The module R/m is injective. Thus, every simple R -module is injective. Therefore, R is

cosemisimple, so J = m = 0. Hence, R is a division ring.

(⇐) Clear. 2

Corollary 3.7 Let R be a right perfect local ring with maximal right ideal m . Then R has (P ) if and only if

R is a division ring.

Proof By Proposition 3.5, the module R/m is not small. Then the rest is clear by Lemma 3.6. 2

Proposition 3.8 Let R be a right perfect ring. If R has (P ), then RR = (⊕n
i=1Li) ⊕ (⊕m

i=1Ki) is a direct

sum of local submodules such that Z(Li) = Li (1 ≤ i ≤ n) and Z(Ki) = 0 (1 ≤ i ≤ m) .

Proof By [14, 42.6], RR = (⊕n
i=1Li)⊕(⊕m

i=1Ki) is a direct sum of local submodules such that Z(Li) = Li and

Z(Ki) ̸= Ki . Since Z(Ki) ̸= Ki , Z(Ki) ≪ Ki . Thus, Z
2
(Ki) = 0. Proposition 2.3 shows that Z(Ki) = 0. 2

Proposition 3.9 Let R be a right perfect ring such that RR = (⊕n
i=1Li) ⊕ (⊕m

i=1Ki) is a direct sum of local

submodules with Z(Li) = Li and each Ki (1 ≤ i ≤ m) is simple small. Then R has (P ).

Proof Let M be any R -module. It is well known that M is a homomorphic image of a free R -module. So

M = M1 +M2 such that M1 is a homomorphic image of a noncosingular module by [13, Proposition 2.4] and

M2 is a homomorphic image of a direct sum of Ki s. By [13, Proposition 2.4], M1 is noncosingular and by [11,

Lemma 9], M2 is small and hence cosingular. Since M/M1
∼= M2/(M1 ∩M2 ) is small, we have Z(M/M1) = 0.

By [13, Proposition 2.1(1)], we have Z(M) ⊆ M1 . But M1 = Z(M1) ⊆ Z(M). Then Z(M) = M1 . Therefore,

M = Z(M) + M2 with M2 semisimple. Let N be a submodule of M2 such that M2 = (Z(M) ∩ M2) ⊕ N .

Thus, M = Z(M)⊕N . 2

The following example gives a ring satisfying the conditions of Proposition 3.9 and shows that a right

perfect ring having (P ) need not be semisimple.

Example 3.10 Let R be a left and right hereditary Artinian serial ring with J2 = 0 (e.g., we can take the ring

of all upper triangular 2×2 matrices with entries in a field K ) (see [5, Example 13.6]). By [5, 13.5], every right
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ideal is a direct sum of an injective module and a semisimple module. By [14, 42.6], RR = (⊕n
i=1Li)⊕ (⊕m

i=1Ki)

is a direct sum of local submodules such that Li are injective and Ki are simple. Without loss of generality we

can assume that all Ki (1 ≤ i ≤ m) are small. Since R is hereditary, every injective module is noncosingular.

By Proposition 3.9, the ring R has (P ).

Proposition 3.11 (1) Let R be a ring with (P ) such that every nonzero injective R -module is not cosingular.

Then every injective R-module is noncosingular.

(2) Let R be a right Artinian ring. If R has (P ), then every injective R -module is noncosingular.

Proof (1) Let M be an injective R -module. Then M/Z(M) is injective cosingular. By hypothesis,

M = Z(M).

(2) By [13, Corollary 2.10] and (1). 2

Recall that a ring R is called a right H-ring if every injective right R -module is lifting.

Theorem 3.12 Let R be a right H -ring. Consider the following conditions:

(1) R is semisimple;

(2) For every module M and every submodule A of M , we have Z(A) = A ∩ Z(M) ;

(3) R has (P ) ;

(4) For every R -module M , Z(M) = Mr(J) is injective;

(5) The class of injective modules coincides with the class of noncosingular modules;

(6) Every injective module is noncosingular.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (3) and if R is a QF -ring, then (6) ⇒ (1).

Proof (1) ⇒ (2) This is clear.

(2) ⇒ (3) Let M be a module. Then M has a decomposition M = M1 ⊕ M2 with M1 injective

and Z(M2) = 0 by [4, 28.10]. Since R is right Noetherian, M1 = ⊕i∈ILi with (Li)i∈I indecomposable

injective submodules. Since each Li is lifting, each Li is local. If Z(Li) ̸= Li , then Z
2
(Li) = 0. But

Z
2
(Li) = Z(Li) ∩ Z(M) = Z(Li) by (2). Thus, Z(Li) = 0. The result follows from [13, Proposition 2.1(4)].

(3) ⇒ (4) Let M be an R -module. By [4, 28.10], M = N ⊕ K such that N is injective and K is a

small module. Therefore, Z(M) = Z(N) ⊕ Z(K). But Z(N) = N (see Proposition 3.11) and Z(K) = 0. It

follows that Z(M) = N is injective. Moreover, Z(M) = Mr(J) by Proposition 3.2.

(4) ⇒ (5) Let E be a noncosingular module. Then E = Z(E) is injective. The result follows from

Proposition 3.11.

(5) ⇒ (6) This is clear.

(6) ⇒ (3) Let M be any module. Then M = K ⊕ L such that K is injective and L is a small module.

By [13, Proposition 2.1], Z(M) = Z(K)⊕Z(L). But Z(L) = 0. Then Z(M) = K is a direct summand of M .

(6) ⇒ (1) Assume that R is a QF -ring. Since (6) implies (3), R has (P ). The result follows by Theorem

3.3 and [7, Corollary 15.7]. 2

Note that the QF condition in implication (6) ⇒ (1) of Theorem 3.12 is not superfluous. As an example

we can take the ring of all upper triangular 2× 2 matrices with entries in a field K . This ring is not QF since
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r(J) ̸= l(J), where J is the Jacobson radical. On the other hand, by Example 3.10, the ring has (P ) but is

not semisimple. This ring is also an H -ring by [9, Corollary 2.5].

4. Examples

Proposition 4.1 Let R be a ring with Jacobson radical J such that R/J is a simple Artinian ring, J ̸= 0

and J2 = 0 . Then:

(1) For every module M , Z(M) = MJ = Rad(M) ;

(2) The class CR = {MR | Z(M) = 0} is closed under homomorphic images;

(3) The ring R does not have (P ).

Proof (1) Up to isomorphism, R has a unique simple right module U . Since J is a nonzero right R/J -

module, there exists a submodule V ≤ JR such that U ∼= V . As V is small in R , U is a small module. Let

M be a nonzero R -module. We want to show that Z(M) = Rad(M).

Now let N ≤ M with M/N small. Then M/N ⊆ EJ , where E = E(M/N). Thus, (M/N)J = 0 and

hence MJ ⊆ N . Therefore, MJ ⊆ Z(M).

Now assume that M ̸= MJ . Then M/MJ is a direct sum of isomorphic copies of U . Note that M/MJ

is an R/J -module. By assumption and [11, Lemma 9], M/MJ is small. Hence, Z(M) ⊆ MJ . Therefore,

Z(M) = MJ .

(2) By (1).

(3) Assume that R has (P ). By (1), Rad(M) is a direct summand of M for every module M . Since

J(R) ≪ RR , we have Z(RR) = 0. Moreover, it follows from (2) that every module is cosingular, a contradic-

tion. 2

Let R be a ring. R is called a right Goldie ring if RR is finite dimensional and satisfies the ascending

chain condition on right annihilator ideals. R is called a right primitive ring if there exists a simple right

R -module U with annR(U) = 0.

The proof of the following last Proposition has the same techniques as the proof of [10, Proposition 12].

Proposition 4.2 Let R be a prime right Goldie ring that is not right primitive. Then every cyclic right

R-module is small. In particular, every cyclic module is cosingular.

Proof Let M = xR and E = E(M), the injective hull of M . We want to show that M ≪ E . Let E = M+T

with T ≤ E . Assume x ∈ M\T . Then E/T is nonzero and cyclic. Hence, there exists a maximal submodule

K/T of E/T . Now K is a maximal submodule of E and the module U = E/K is simple. By hypothesis,

I = annR(U) ̸= 0. Since R is prime, IR is essential in RR . By [6, Proposition 5.9], I contains a regular

element, namely a nonzero divisor c . Now E = Ec ⊆ EI ⊆ E implies that EI = E . Thus E = K , a

contradiction. Hence, x ∈ T and so E = T . 2
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[15] Zöschinger H. Kosinguläre und Kleine Moduln. Comm Algebra 2005; 33: 3389–3404 (in German).

657

http://dx.doi.org/10.1007/978-1-4684-9913-1
http://dx.doi.org/10.1016/0021-8693(68)90091-4
http://dx.doi.org/10.2140/pjm.1969.31.289
http://dx.doi.org/10.2140/pjm.1969.31.289
http://dx.doi.org/10.1007/978-1-4612-0525-8
http://dx.doi.org/10.1007/978-1-4612-0525-8
http://dx.doi.org/10.1007/BF01896707
http://dx.doi.org/10.1080/00927870209342390
http://dx.doi.org/10.1080/AGB-200060028

	Introduction
	Some properties of rings having (P)
	When perfect rings have property (P)
	Examples

