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Abstract: In this study, a force and torque estimation method based on an adaptive neuro-fuzzy inference system

(ANFIS) has been developed to get rid of multiple integral calculations of air gap coefficients that cause time delay for

magnetic levitation control applications. During magnetic levitation applications that contain a 4-pole hybrid electromag-

net, multiple integral calculations have to be done for obtaining air gap permanence parameters, and these parameters

are needed to calculate force and torque parameters that are produced by the poles of the hybrid electromagnet, which

means, if time delay occurs for calculation of permanence parameters, actual force and actual torque values that are

produced by hybrid electromagnet’s poles cannot be exactly known; thus, the advantage of having an exact model of

the system gets lost and, as a result, the controller’s performance goes down. To address a solution, an ANFIS using

a hybrid learning algorithm consisting of backpropagation and least-squares learning methods is proposed to estimate

force and torque parameters using training data already obtained using multiple integral calculations before.
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1. Introduction

Applications of magnetic levitation systems have gained expanding importance in industry during the last few

decades. The most popular usage areas are magnetic bearings [1–4], transportation systems [5–7], and actuation

of objects in micro- and nanoscales [8,9]. Because there is no mechanical contact between levitation system

and levitating object, consisting of a ferromagnetic material, mechanical friction has almost no effect on system

parameters (except air friction, which has a comparatively low value) on the levitating object [10]. However,

there are also some disadvantages, such as the system model is highly nonlinear, and even though some methods

may be useful for linearization at some certain points, obtained linear models show unstable system behavior

[10,11].

In magnetic levitation systems, conventional u-type electromagnets can only control one degree of free-

dom; thus, they cannot form a magnetic levitation system that works in several axes. For constructing a u-type

electromagnet that has working space including more than one axis, multiple electromagnets have to be located

on a plane and be controlled in such a way that every coil of the pole is being energized in some kind of special

order. These electromagnets are named 4-pole hybrid electromagnets; each pole consists of both a permanent

magnet and a coil. Energizing coils in a different sequence means that controllable moment values exist on the

levitated object and the system gains the ability to rotate around the X and Y axes.
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When the coils are fed by current, magnetic flux occurs on electromagnets proportional to applied current

and because of the ferromagnetic property of the plane object the poles start generating magnetic force to push

or pull the ferromagnetic object. Direction of the magnetic force depends on the direction of the applied current

for each pole. The problem here is that, magnetic flux (and of course magnetic force occurring) is not the

function of current just by itself; there are also some other parameters that have crucial effects on the value

of magnetic flux, such as the magnetic permanence of the air gap between a pole and ferromagnetic plane and

also the magnetic permanence of the permanent magnet of the electromagnet. Even though the permanence of

the permanent magnet can be assumed as a static value, the magnetic permanence of the air gap depends on

translational position along the Z axis and rotational positions around the X and Y axes of a pole for a static

ferromagnetic plane. Moreover, the calculation of the magnetic permanence of the air gap contains multiple

integrals with nonlinear terms.

Calculation of the magnetic permanence of the air gap for each pole in a small sampling time weakens

any control algorithm; the main reason for this situation is that calculation of the magnetic permanence of

the air gap for each pole means that applied force by each pole is being obtained, when a time delay occurs

in data acquisition because of the low processing speed of the data acquisition card (and it is commonly

accepted that every magnetic levitation application requires very high processing data acquisition speed due to

magnetic levitation’s highly nonlinear nature [12]), proper actuation signals for coils cannot be produced. As an

alternative solution, one may think that using a force sensor may be useful; however, many magnetic levitation

systems are very vulnerable in terms of disturbance and, because of this, using a force sensor is not a good

engineering implementation; in some cases, the electromagnetic force is generally measured by an additional

system consisting of a copy of the levitating object located in a load cell [12,13]. The only remaining reasonable

technique for success of controlling magnetic levitation systems is estimating the magnetic force value for each

pole.

The main contribution of this work is to design a kind of expert system that can be used as a “look-up

table” for force and torque values produced by hybrid electromagnets in some specific conditions. Almost every

magnetic levitation system that is popularly being used in industrial applications and in academic research works

under the condition of very fast sampling rates for data acquisition. This fact brings some disadvantages, such

as high costs for data acquisition cards and power consumption, if one wants to control the system measuring

actual force and actual torque values acting on it. The point is, if a trustworthy estimation method could be

developed for estimation of acting force and actual torque values, reduction of computer processing power would

be achieved decreasing calculations for obtaining actual acting force and actual torque values applied by poles

of hybrid electromagnet. Thus, more complex control algorithms requiring higher energy levels can be used,

instead of wasting processor power for calculation of force parameters.

2. 4-Pole hybrid electromagnet structure

A simple 4-pole hybrid electromagnet structure can be seen in Figure 1 below; it has three degrees of freedom,

one translational axis Z , and two rotational axes X and Y .

As can be seen in Figure 2, moment values around the Y axis and X axis depend on system design

parameters a and b . a represents the distance from the closest edge of each pole to rotation axes, while b

represents the distance from the furthest edge of each pole to the center of gravity.

Process of energizing coils can be seen in Figure 3 below. Three virtual winding currents are defined as

Iz , Iα , and Iβ . These parameters represent a sort of average current working for only one axis (Z , α , or β).
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Figure 1. 4-Pole hybrid electromagnet. Figure 2. Top view of 4-pole hybrid electromagnet and

its axes.

This assumption gives an opportunity for controlling each degree of freedom while controlling I1 , I2 , I3 , and

I4 independently.

Figure 3. Energizing coils.

Controlling the system for translational movement along the Z axis, I1 , I2 , I3 , and I4 have to be

positive and their average value is calculated in Eq. (1).

Controlling the system for translational movement around the α axis, I1 and I4 have to be negative,

while I2 and I3 have to be positive and their average value is calculated in Eq. (2).

Controlling the system for translational movement around the β axis, I1 and I2 have to be negative,
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while I3 and I4 have to be positive and their average value is calculated in Eq. (3).

Iz =
1

4
(I1 + I2 + I3 + I4) (1)

Iα =
1

4
(−I1 + I2 + I3 − I4) (2)

Iβ =
1

4
(−I1 − I2 + I3 + I4) (3)


I1
I2
I3
I4

 =


1 −1 −1
1 1 −1
1 1 1
1 −1 1


 Iz
Iα
Iβ

 (4)

In the second row of Figure 3, it is implied that bold and bigger characters are energized coils; however, the

system behaves as if coils are being energized with some virtual winding currents as shown in the first row of

Figure 3.

Considering movements of all poles, translational displacement z , along the Z axis, and rotational

displacements α and β , around the X and Y axes, respectively, can be written as below.

z =
1

4
(z1 + z2 + z3 + z4) (5)

α =
1

2b

(
z1 + z4

2
− z2 + z3

2

)
(6)

β =
1

2b

(
z1 + z2

2
− z3 + z4

2

)
(7)

In the working principle of hybrid electromagnets, the permanent magnet of each coil behaves as if it is a

magnetomotive force source. Epm represents the magnetomotive force source parameter, whereas each coil is a

magnetomotive force source, represented as NI ; N is number of turns and I is current. The permanence value

of each permanent magnet is inversely proportional to the reluctance value of the permanent magnet as shown

in Eq. (8) below. Rpm represents the reluctance value for each permanent magnet.

Ppm =
1

Rpm
(8)

The air gap between poles and ferromagnetic plane core is also represented as a reluctance parameter, Rgap . To

identify the relationship between magnetic flux values φi produced by poles and magnetomotive force sources

(permanent magnets and coils), the equivalent magnetic circuit of the 4-pole electromagnet is shown in Figure

4 below.

The bold arrows around the square in Figure 4 represent the direction of magnetic flux in the circuit.

If the circuit given in Figure 4 is analyzed with respect to the mesh-current method shown in Figure 5,

Eqs. (9), (10), (11), (12), (13), (14), (15), and (16) are obtained.
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Figure 4. Equivalent magnetic circuit of 4-pole hybrid

electromagnet.

Figure 5. Mesh-current method.

φaRgap4 + φaRgap1 + 2φaRpm − (Epm +NI4)− (Epm +NI1) = 0 (9)

φbRgap4 + φbRgap3 + 2φbRpm − (Epm +NI4)− (Epm +NI3) = 0 (10)

φcRgap2 + φcRgap3 + 2φcRpm − (Epm +NI2)− (Epm +NI3) = 0 (11)

φdRgap2 + φdRgap1 + 2φdRpm − (Epm +NI2)− (Epm +NI1) = 0 (12)

φ1 = φa + φd (13)

φ2 = φd + φc (14)

φ3 = φb + φc (15)

φ4 = φa + φb (16)

Therefore, magnetic flux parameters produced by each pole can be written as below:

φa =
2Epm +NI1 +NI4

2Rpm +Rgap1 +Rgap4
(17)

φb =
2Epm +NI3 +NI4

2Rpm +RGap3 +RGap4
(18)
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φc =
2Epm +NI2 +NI3

2Rpm +Rgap2 +Rgap3
(19)

φd =
2Epm +NI1 +NI2

2Rpm +Rgap1 +Rgap2
(20)

φ1 =
2Epm +NI1 +NI4

2Rpm +Rgap1 +Rgap4
+

2Epm +NI1 +NI2
2Rpm +Rgap1 +Rgap2

(21)

φ2 =
2Epm +NI1 +NI2

2Rpm +Rgap1 +Rgap2
+

2Epm +NI2 +NI3
2Rpm +Rgap2 +Rgap3

(22)

φ3 =
2Epm +NI3 +NI4

2Rpm +Rgap3 +Rgap4
+

2Epm +NI2 +NI3
2Rpm +Rgap2 +Rgap3

(23)

φ4 =
2Epm +NI1 +NI4

2Rpm +Rgap1 +Rgap4
+

2Epm +NI3 +NI4
2Rpm +Rgap3 +Rgap4

(24)

So far, magnetic flux parameters have been given. Now, the final step before obtaining fz , Tα , and Tβ

parameters is to calculate the air gap permanence parameters for each pole. The problem here is, during any

magnetic levitation process (including force control, position control, velocity control, or acceleration control),

Pgap values have to be calculated to determine applied magnetic flux, and applied force and torque parameters

are functions of applied magnetic flux. The levitated object’s coordinates in the three dimensional space of

euclidean geometry, which are parameters of function Pgap , dynamically change in time, and calculating these

parameters before producing control signal for each coil is hard work for any computer processors. Because of

this reason, this process causes a time delay and cost for required high-tech computers. Pgap parameters for

each coil are given in the equations below.

Pgap1 =

∫ b

a

∫ −a

−b

µ0

z − y tanβ + x tanα
dxdy (25)

Pgap2 =

∫ −a

−b

∫ −a

−b

µ0

z − y tanβ + x tanα
dxdy (26)

Pgap3 =

∫ −a

−b

∫ b

a

µ0

z − y tanβ + x tanα
dxdy (27)

Pgap4 =

∫ b

a

∫ b

a

µ0

z − y tanβ + x tanα
dxdy (28)

After calculating Pgap values, magnetic flux values for each pole can be calculated. In Eq. (29) below, magnetic

field density value Bi is obtained using magnetic flux value φi for each pole. S is pole surface area.

Bi =
φi

S
, i = 1, 2, 3, 4 (29)
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Force value produced by a single pole is given in Eq. (30) below. µ0 is the permeability constant.

fi =
B2

i S

2µ0
, i = 1, 2, 3, 4 (30)

After obtaining force values for each pole, finally the total force on the Z axis, fz value, can be calculated as

shown in Eq. (31):

fz = f1 + f2 + f3 + f4 (31)

Additionally, torque values for the X and Y axes can be calculated as follows:

Tα = (f1 − f2 − f3 + f4)

(
b− a

2
+ a

)
(32)

Tβ = (f1 + f2 − f3 − f4)

(
b− a

2
+ a

)
(33)

For each sampling time, finding analytical solutions of Eqs. (25), (26), (27), and (28) is of crucial importance

for obtaining fz , Tα , and Tβ values given in Eqs. (31), (32), and (33), respectively.

The physical parameters used in this study are given in the Table below.

Table. Physical parameters.

Parameter a [m] b [m] µ0 Rpm S[m2] N Epm

Value 0.0450 0.0810 1.256 × 10−6 7.9577 × 105 0.0031 200 3115

3. ANFIS structure

As mentioned in the introduction section, α , β , z , I1 ,I2 ,I3 , andI4 parameters are used as the training process

inputs in the ANFIS hybrid learning algorithm. Three membership functions (MFs) are used for each input,

and there are three consequent functions overall (consequent functions consist of consequent parameters and

are updated based on least-squares learning algorithm). The ANFIS model structure can be seen in Figure 6

below.

3.1. Layers

In Layer-1, Ol,i is the output of the ith node of the layer l . Every node i in this layer is an adaptive node

with a node function as follows:
O1,i = µAi(x) for i = 1, 2, 3 (34)

O1,i = µBi−3(x) for i = 4, 5, 6 (35)

O1,i = µCi−6(x) for i = 7, 8, 9 (36)

O1,i = µDi−9(x) for i = 10, 11, 12 (37)

O1,i = µEi−12(x) for i = 13, 14, 15 (38)
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Figure 6. ANFIS model structure.

O1,i = µFi−15(x) for i = 16, 17, 18 (39)

O1,i = µGi−18(x) for i = 19, 20, 21 (40)

Here x is the input node i and Ai (or Bi−3 , Ci−6 , Di−9 , Ei−12 , Fi−15 , Gi−18) is a linguistic label associated

with this node. Therefore O1,i is the membership grade of the fuzzy set (A1 , A2 , A3 , B1 , B2 , B3 , C1 , C2 ,C3 ,

D1 , D2 , D3 , E1 , E2 , E3 , F1 , F2 , F3 , G1 , G2 , and G3).The generalized bell function given in Eq. (41) is

used as the MF. The maximum value of this function is equal to 1, while the minimum value is 0. Negative

input values are put into the algorithm after calculation of their absolute values. Three generalized functions

are used for one input. γi , ϕi , and υi parameters are referred to as the premise parameters. The premise

parameters are updated for each epoch using a backpropagation learning algorithm.

µi(x) =
1

1 +
∣∣∣x−νi

γi

∣∣∣2ϕi
for i = 1, 2, 3....21 (41)

Initial schemes of the three membership functions for each input are given in Figures 7–10 below.
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Figure 7. Comparison of integral calculations and ANFIS hybrid learning method.
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calculations.

Figure 9. Percentage error between ANFIS method and

integral calculations.

In Layer-2, the output is the product of all the incoming signals as given below:

O2,i = ωi = µAi(x)µBi(x)µCi(x)µDi(x)µEi(x)µFi(x)µGi(x) for i = 1, 2, 3 (42)

In Layer-3, outputs are called normalized firing strengths, given as follows:

O3,i = ω̄i =
ωi

ω1 + ω2 + ω3
for i = 1, 2, 3 (43)
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In Layer-4, every node i in this layer is an adaptive node with a node function given as follows:

O4,i = ω̄i∆pi = ω̄i (p1,ixA + p2,ixB + p3,ixC + p4,ixD + p5,ixE + p6,ixF + p7,ixG + ri)︸ ︷︷ ︸
∆pi

for i = 1, 2, 3 (44)

p1,i , p2,i ,p3,i ,p4,i ,p5,i ,p6,i , p7,i , and ri parameters are the consequent parameters and are updated in each

epoch by least-squares learning algorithm. Each consequent parameter’s initial value is chosen to be 1 in this

study.

In Layer-5, this single node in this layer is a fixed node, which computes the overall output as the

summation of all incoming signals.

O5,i =
∑
i

ω̄ifi =

∑
i

ωifi∑
i

ωi
for i = 1, 2, 3 (45)

In the hybrid learning algorithm, there are two different learning directions. The first learning direction

is forward pass using the least-squares method. The second learning direction is backward pass using the

backpropagation method.

4. The least-squares method in the hybrid learning algorithm

An adaptive network can be modeled as follows: the system has only one output represented by

σ = F (τ, ξ), (46)

where τ is the vector of input variables, ξ is the set of parameters, and σ is the overall function implemented

by the adaptive network. If there exists a function ψ such that the composite function ψσ is linear in some of

the elements of ξ , then these elements can be identified by the least-squares method. To define deeply, when

the parameter set ξ is divided into two sets, ξ1 represents premise parameters and ξ2 represents consequent

parameters.

ξ = ξ1 + ξ2 (47)

such that ψσ is linear in the elements of ξ2 ; then upon applying ψ to Eq. (46), Eq. (48) is obtained as follows:

∆ = ψκσ, (48)

which is linear in the elements of ξ2. Now, given initial values of ξ1 , the training data H(α , β , z , I1 , I2 , I3 ,

I4) can be implemented into Eq. (48), and thus Equation (49) is obtained.

Aθ = λ, (49)

where θ is an unknown vector whose elements are parameters in ξ2 . The least-squares estimator for θ is given

below:

θ∗ = (ATA)−1ATλ, (50)

where AT is the transpose of A and (ATA)−1AT is the pseudoinverse of A if ATA is nonsingular.
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5. The backpropagation method in the hybrid learning algorithm

For a given training data set H , the error measure for the ith entry can be calculated as the sum of squared
errors:

Ei =

N(L)∑
k=1

(dk − ϑL,k)
2
, (51)

where dk is the kth component of the ith desired output vector and ϑL,k is the kth component of the actual

output vector produced by presenting the ith input vector to the adaptive network. When Ei is equal to 0, the

adaptive network becomes able to produce the exact desired output vector in the ith training data pair, which

means the task here is to minimize the error measure.

To create the error signal,

εl,i =
∂+Ei

∂ϑl,i
(52)

εl,i =

N(l+1)∑
m=1

∂+Ei

∂ϑl+1,m

∂fl+1,m

∂ϑl,i
(53)

∂+Ei

∂ω
=
∂+Ei

∂ϑl,i

∂fl,i
∂ω

= εl,i
∂fl,i
∂ω

(54)

The update equation is given below. η is the learning rate and chosen as 0.2 in this study.

∆ω = −η ∂
+Ei

∂ω
(55)

6. Results and discussion

6.1. Results for the permanent magnet part of the hybrid electromagnet

In Figure 7, fz , α , and β correlation results in the case of I1 = I2 = I3 = I4 = 0 are given. In this case, the only

working part of the hybrid magnet is the permanent magnet part and torque values do not exist. The leaf on

top represents α and β distribution for z= 0.01 m, the leaf on the bottom represents α and β distribution for

z= 0.006 m, and leaves between them are for z= 0.007, z= 0.008, and z= 0.009, respectively. Compared with

the ones obtained using multiple integral calculations, it can be said that the ANFIS hybrid learning algorithm

shows almost the same behavior pattern. In other words, the designed ANFIS structure is able to mimic the

actual 4-pole hybrid electromagnet’s behavior for both cases.

To emphasize the success of the proposed method, the error values of the results between the ANFIS

hybrid learning algorithm method and multiple integral calculations are given in Figure 8 below. The error values

are comparatively acceptable, except the error values occurring on boundary values of training parameters, α

and β . Indeed, this situation is expected and usual because the ANFIS hybrid learning algorithm changes its

premise and consequent parameters while different parts of the training data are being used in the algorithm.

Maximum error, which is 5.4 N, occurs for z= 0.01 m. The other leaves give lower maximum error values on

the boundaries. Minimum error values mostly occur in the middle of the leaves, which makes sense, because

the algorithm runs for the maximum amount of training data around this zone.

To have a look from a different perspective, the percentage error values of the results between the ANFIS

hybrid learning algorithm method and multiple integral calculations are given in Figure 9 below. The maximum
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percentage error is 1.7%, occurring for z = 0.01 m, and the maximum percentage error value for each leaf occurs

around the boundaries. The minimum percentage error values mostly occur in the middle of the leaves.

6.2. Results for hybrid electromagnet

In Figures 10–14 below, the correlation between Eα (error between ANFIS method and integral calculations),

Iα , and α is given for different z values. For each z value, the minimum error value equals 0. The lowest

maximum error value among all z combinations exists for z = 0.006, equal to 0.0062. The highest maximum

error value exists for z = 0.008 m, equal to 0.04 Nm.
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Figure 14. Eα , Iα , and α for z = 0.01 [m]. Figure 15. Eβ , Iβ , and β for z = 0.006 [m].

In Figures 15–19 below, the correlation between Eβ (error between ANFIS method and integral calcula-

tions), Iβ , and β is given for different z values. For each z value, the minimum error value equals 0. The lowest

maximum error value among all z combinations exists for z = 0.006, equal to 0.021. The highest maximum

error value exists for z = 0.009 m, equal to 0.31 Nm.
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Figure 16. Eβ , Iβ , and β for z = 0.007 [m]. Figure 17. Eβ , Iβ , and β for z = 0.008 [m].

7. Conclusion

The ANFIS hybrid learning algorithm is successfully capable with the estimation of a 4-pole hybrid electro-

magnet’s force and torque parameters. It is obvious that an expert system acting like a “look-up table” for the

occurring force and torque values of a 4-pole hybrid electromagnet can be created using this method in some
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Figure 18. Eβ , Iβ , and β for z = 0.009 [m]. Figure 19. Eβ , Iβ , and β for z = 0.01 [m].

specific ranges. Moreover, this method cannot only remove the requirement of using high cost data acquisition

cards, but also reduce the power consumption due to high sampling rate sensor needs. Another advantage is

that, for very complex control algorithms, this method can be used with high cost equipment as a hybrid design,

consisting of both estimation and real-time data acquisition, which means the study results open a way to create

new advanced control algorithms for magnetic levitation technology.
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