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On properties of the minus partial order in regular modules

By BURCU UNGOR (Ankara), SAIT HALICIOGLU (Ankara),
ABDULLAH HARMANCI (Ankara) and JANKO MAROVT (Ljubljana)

Abstract. We investigate properties of the minus partial order in regular modules,

present new characterizations of this order, and generalize some known results. We

introduce a new relation in the general module theoretic setting that is analogous to the

space pre-order on complex matrices and study how it is related to the minus partial

order.

1. Introduction

Throughout this paper, R denotes an associative ring with identity 1R, and

modules are unitary right R-modules. For a right R-module MR = M , S =

EndR(M) denotes the ring of all right R-module endomorphisms of M . It is

well-known that M is a left S- and right R-bimodule. For an (S,R)-bimodule M ,

let lS(.) and rR(.) stand for the left annihilator of a subset of M in S and the

right annihilator of a subset of M in R, respectively. If the subset is a singleton,

say {m}, then we simply write lS(m) and rR(m), respectively. For a subset A of

a ring R, lR(A) and rR(A) denote the left annihilator and the right annihilator

of A in R, respectively. If the subset A is a singleton, say A = {a}, then again

we simply write lR(a) and rR(a), respectively.
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Let S be a semigroup and a ∈ S. Any solution x = a− to the equation

axa = a is called an inner generalized inverse of a. If such a− exists, then a is

called regular, and if every element in a semigroup S is regular, then S is called

a regular semigroup. Hartwig [3] introduced the minus partial order ≤− on

regular semigroups using generalized inverses. For a regular semigroup S and

a, b ∈ S, we write

a ≤− b if a−a = a−b and aa− = ba− (1)

for some inner generalized inverse a− of a.

Let B(H) denote the algebra of all bounded linear operators on a Hilbert

space H. For an operator A ∈ B(H), the symbols Ker A and Im A stand for the

kernel and the image of A, respectively. It is known that A ∈ B(H) is regular

if and only if Im A = Im A, i.e., the image of A is closed (see, for example, [7]).

Šemrl studied in [9] the minus partial order on B(H). He did not want to restrict

himself only to operators in B(H) with closed images, so he defined a new order

≤S on B(H) in the following way: For A,B ∈ B(H), we write A ≤S B if there

exist idempotent operators P,Q ∈ B(H) such that Im P = Im A, Ker A = Ker Q,

PA = PB, and AQ = BQ. Šemrl called this order the minus partial order on

B(H) and proved that this is indeed a partial order on B(H) for a general Hilbert

space H. He also showed that the partial order ≤S is the same as Hartwig’s minus

partial order ≤− when H is finite dimensional.

In [5], Baer rings were introduced as rings in which the right (equivalently,

left) annihilator of every nonempty subset is generated by an idempotent.

To study the torsion theory and motivated by Kaplansky’s work on Baer rings,

Hattori introduced in [4] principally projective rings. A ring is called left (resp.

right) principally projective if every principal left (resp. right) ideal is projective,

or equivalently, the left (resp. right) annihilator of any element of the ring is

generated by an idempotent as a left (resp. right) ideal. Left (resp. right) princi-

pally projective rings are in the literature now usually termed as left (resp. right)

Rickart rings. Clearly, every Baer ring is left and right Rickart, i.e., a Rickart ring.

Note that every Rickart ring has the identity (see, e.g., [1, page 18]). An example

of a Baer ring is the algebra B(H).

Following Šemrl’s approach, the authors further generalized in [2] the minus

partial to Rickart rings. A new relation was introduced in [2] on a ring with

identity: Let R be a ring with the multiplicative identity 1R and a, b ∈ R. Then

we write a ≤− b if there exist idempotent elements p, q ∈ R such that

lR(a) = R(1R − p), rR(a) = (1R − q)R, pa = pb and aq = bq. (2)
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It was proved in [2] that this relation ≤− is indeed a partial order when R is

a Rickart ring and that definitions (1) and (2) are equivalent when R is a ring

in which every element is regular, i.e., R is a von Neumann regular ring. In [10],

the present authors introduced a relation on the power set P(R) of a ring R and

showed that this relation, which is called “the minus order on P(R)”, is a partial

order when R is a Baer ring.

Recently, in [11], the concept of the minus relation has been extended to the

module theoretic setting using the endomorphism rings of modules. It was proved

that this new relation, which we will present in Section 2, is a partial order when

the module is regular.

Motivated by the before-mentioned works on the minus partial order on dif-

ferent structures and, particularly, by the generalization of this notion to the

general module theoretic setting, we study in Section 3 properties of the minus

partial order on regular modules and obtain some new characterizations of this

order. We also introduce a new relation in the general module theoretic setting

that is analogous to the space pre-order on complex matrices and study how it is

related to the minus partial order.

2. Preliminaries

Let M be a right R-module with S = EndR(M). For the sake of brevity,

in the sequel, S will stand for the endomorphism ring of the module M considered.

We will denote the identity map in S by 1S . The element m ∈ M is called

a (Zelmanowitz) regular element if

m = mϕ(m) ≡ mϕm

for some ϕ ∈ M∗, where M∗ = HomR(M,R) denotes the dual of M . Such

an element ϕ ∈ M∗ is called a (Zelmanowitz) regular support of m and will be

denoted by m(1). Also, {m(1)} denotes the set of all regular supports of m ∈M .

A module M is called regular (in the sense of Zelmanowitz) if every element of M

is regular.

For a ring R, let a ∈ R be a regular element (in the sense of von Neumann).

Then there exists a− ∈ R such that a = aa−a. It is well-known that a ∈ R

is regular (in the sense of von Neumann) if and only if a is regular in RR (or,

similarly, in the left R-module RR) (in the sense of Zelmanowitz).
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Remark 2.1 ([8, Lemma B.47]). Let M be a module and m ∈M be regular,

say m = mϕm, where ϕ ∈ M∗. Then e = ϕm ∈ R is an idempotent, mR ∼= eR

is projective, and M = mR⊕N where N = {n ∈M : mϕn = 0}.

Remark 2.2. Let M be a module. It is known that HomR(R,M) ∼= M .

Let m ∈ M be regular, say m = mϕm where ϕ ∈ M∗. Then for the map

mϕ : M →M , defined by

(mϕ)(x) = mϕ(x) ≡ mϕx, x ∈M,

we may conclude that mϕ ∈ S and that mϕ is an idempotent in S.

In [11], the notion of the minus relation was extended to the module theoretic

setting. It was proved that the following relation is a partial order when the

module M is regular.

Definition 2.3 ([11]). Let M be a module and m1,m2 ∈M . We write m1 ≤−

m2 if there exists ϕ ∈M∗ such that m1 = m1ϕm1, m1ϕ = m2ϕ and ϕm1 = ϕm2.

We call the relation ≤− the minus order on M .

The following results that were proved in [11] will be used in the continuation.

Proposition 2.4 ([11, Propositions 2.4 and 2.17]). Let M be a module

and m1,m2 ∈ M . If m1 ≤− m2, then m1R ⊆ m2R, lS(m2) ⊆ lS(m1), and

rR(m2) ⊆ rR(m1).

Proposition 2.5 ([11, see Definition 2.19 and Theorem 2.20]). Let M be

a module, and let m1,m2 ∈ M be regular. If m1 ≤− m2, then m1R ∩ (m2 −
m1)R = {0}.

The next result gives a new characterization of the minus (partial) order in

(regular) modules.

Proposition 2.6 ([11, Theorem 2.5]). Let M be a module and m1,m2 ∈M
with m1 regular. Then m1 ≤− m2 if and only if there exist f2 =f ∈ S, a2 = a∈R
such that lS(m1) = lS(f), rR(m1) = rR(a), fm1 = fm2, and m1a = m2a.

3. The minus partial order

Let M be a module and m ∈M . We begin with an auxiliary result related to

the regular support of m, and then give some characterizations of minus partial

order in terms of regular supports.
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Lemma 3.1. Let M be a module. Then we have the following:

(1) Let m ∈M be a regular element. Then

{m(1)} = {ϕ+ (1R − ϕm)α+ β(1S −mϕ) : ϕ ∈ {m(1)}, α, β ∈M∗}.

(2) Let m1,m2 be regular elements of M . Then m1 ≤− m2 if and only if there

exists ϕ ∈ {m(1)
2 } such that m1 = m1ϕm2 = m2ϕm1 = m1ϕm1.

Proof. (1) Let K := {ϕ+ (1R − ϕm)α + β(1S −mϕ) : ϕ ∈ {m(1)}, α, β,∈
M∗} and x = ϕ + (1R − ϕm)α + β(1S − mϕ) ∈ K for some ϕ ∈ {m(1)} and

α, β,∈M∗. Then

mxm = mϕm+ (m−mϕm)αm+mβ(m−mϕm) = m.

Hence x ∈ {m(1)}, and so K ⊆ {m(1)}. For the reverse inclusion, let z ∈ {m(1)}.
Since z = z + (1R − zm)0 + 0(1S −mz) ∈ K, we conclude that {m(1)} ⊆ K.

(2) Assume that m1 ≤− m2. By Proposition 2.4, we have m1R ⊆ m2R. Then

there exists r ∈ R such that m1 = m2r. Also, since m2 is regular, there exists

ϕ ∈M∗ such that m2 = m2ϕm2. Hence

m1 = m2r = m2ϕm2r = m2ϕm1,

and thus m1 = m2ϕm1. Since

m1ϕm1 = m2ϕm1 − (m2 −m1)ϕm1 = m1 − (m2 −m1)ϕm1,

we havem1ϕm1−m1 = −(m2−m1)ϕm1 ∈ m1R∩(m2−m1)R. By Proposition 2.5,

m1R ∩ (m2 −m1)R = {0}, and so m1 = m1ϕm1. Consider

m2 −m1 = m2ϕm2 −m2ϕm1 = m2ϕ(m2 −m1).

Then we have

(m2 −m1)ϕ(m2 −m1) = m2ϕ(m2 −m1)−m1ϕ(m2 −m1)

= (m2 −m1)−m1ϕ(m2 −m1),

and therefore

(m2 −m1)− (m2 −m1)ϕ(m2 −m1) = m1ϕ(m2 −m1) ∈ m1R ∩ (m2 −m1)R.

Again, since m1R ∩ (m2 −m1)R = {0}, we may conclude that m1 = m1ϕm1 =

m1ϕm2. Therefore, we have m1 = m1ϕm2 = m2ϕm1 = m1ϕm1.
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Conversely, suppose there exists ϕ ∈ {m(1)
2 } such that m1 = m1ϕm2 =

m2ϕm1 = m1ϕm1. Let α := ϕm1ϕ ∈M∗. On the one hand, we have

m1αm1 = m1ϕm1ϕm1 = m1ϕm1 = m1,

and on the other hand, we obtain

m1α = m1ϕm1ϕ = m1ϕ = m2ϕm1ϕ = m2α

and

αm1 = ϕm1ϕm1 = ϕm1 = ϕm1ϕm2 = αm2.

Therefore, by Definition 2.3, we may conclude that m1 ≤− m2. �

Theorem 3.2. Let M be a regular module and m1,m2 ∈ M . Then the

following are equivalent:

(1) m1 ≤− m2;

(2) {m(1)
1 } ∩ {m

(1)
2 } 6= ∅, m1R ⊆ m2R, and Sm1 ⊆ Sm2;

(3) {m(1)
2 } ⊆ {m

(1)
1 }.

Proof. (1) ⇒ (2) It follows directly from Lemma 3.1(2).

(2)⇒ (3) Assume that {m(1)
1 }∩{m

(1)
2 } 6= ∅, m1R ⊆ m2R, and Sm1 ⊆ Sm2. Then

m1 = fm2 = m2r for some f ∈ S and r ∈ R. Let x ∈ {m(1)
2 }, i.e., m2 = m2xm2.

Since {m(1)
1 } ∩ {m

(1)
2 } 6= ∅, there exists α ∈ M∗ such that m1 = m1αm1 and

m2 = m2αm2. On the one hand,

m1xm1 = fm2xm2r = fm2r = fm1,

and on the other hand, m1 = m1αm1 = fm2αm2r = fm2r = fm1, and so

m1 = m1xm1. Hence x ∈ {m(1)
1 }, and thus {m(1)

2 } ⊆ {m
(1)
1 }.

(3) ⇒ (1) Assume that {m(1)
2 } ⊆ {m

(1)
1 }. Note that m2 is regular, and let

ϕ ∈ {m(1)
2 }. By assumption, m1ϕm1 = m1. We will prove that m1 = m1ϕm2

and m1 = m2ϕm1. Let Kϕ := {ϕ + (1R − ϕm2)α + β(1S −m2ϕ) : α, β ∈ M∗}
where ϕ is as above. For any α ∈ Kϕ, Lemma 3.1(1) implies that α ∈ {m(1)

2 }.
Fix for a while an arbitrary α ∈ Kϕ. Then there exist γ, β ∈M∗ such that

α = ϕ+ (1R − ϕm2)γ + β(1S −m2ϕ). (3)

Observe that ϕ, α ∈ {m(1)
2 } ⊆ {m

(1)
1 } implies m1ϕm1 = m1αm1. Multiplying (3)

by m1 from the left and the right we thus get

(m1 −m1ϕm2)γm1 +m1β(1S −m2ϕ)m1 = 0. (4)
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Since α ∈ Kϕ was arbitrary, (4) holds for any γ and β in M∗. By taking γ =

0, we thus have m1M
∗(1S − m2ϕ)m1 = {0}. Then (1S − m2ϕ)m1M

∗(1S −
m2ϕ)m1 = {0}. Let x = (1S − m2ϕ)m1 ∈ M . Since M is a regular module,

there exists g ∈ M∗ with xgx = x. So, xgx = x and xM∗x = {0}, which

implies x = 0. It follows that m1 = m2ϕm1. Similarly, by taking β = 0, we get

(m1 −m1ϕm2)M∗m1 = {0}, from which we may conclude that m1 = m1ϕm2.

It follows that m1 ≤− m2 by Lemma 3.1(2). �

As a consequence of Proposition 2.4, Lemma 3.1(2) and (1)⇔ (2) in Theorem

3.2, we obtain the following characterization for the minus partial order.

Corollary 3.3. Let M be a regular module and m1,m2 ∈ M . Then the

following are equivalent:

(1) m1 ≤− m2;

(2) lS(m2) ⊆ lS(m1), rR(m2) ⊆ rR(m1), and there exists α ∈ M∗ such that

m1 = m1αm1, m2 = m2αm2.

Proof. (1) ⇒ (2) It follows immediately by Proposition 2.4 and (1) ⇔ (2)

in Theorem 3.2.

(2) ⇒ (1) Assume that lS(m2) ⊆ lS(m1), rR(m2) ⊆ rR(m1), and m1 = m1αm1,

m2 = m2αm2 for some α ∈ M∗. Let f = m2α ∈ S and a = αm2 ∈ R. Then

1S − f ∈ lS(m2) and 1R − a ∈ rR(m2), and thus 1S − f ∈ lS(m1) and 1R − a ∈
rR(m1) by assumption. Hence m1 = fm1 = m2αm1 and m1 = m1a = m1αm2,

and therefore m1 ≤− m2 by Lemma 3.1(2). �

For a module M and m ∈M , let

D1(m) := {ϕ− α : ϕ, α ∈ {m(1)}}.

Lemma 3.4. Let m be a regular element in a module M . Then

D1(m) = {β ∈M∗ : mβm = 0}.

Proof. Let m ∈ M be regular, and let A := {β ∈ M∗ : mβm = 0}.
If ϕ− α ∈ D1(m), then

m(ϕ− α)m = mϕm−mαm = m−m = 0.

Hence ϕ−α ∈ A. Conversely, if β ∈ A, then mβm = 0. Since m is regular, there

exists σ ∈M∗ such that m = mσm. Thus m(σ− β)m = mσm−mβm = m, and

hence σ− β ∈ {m(1)}. Since σ ∈ {m(1)}, σ− (σ− β) = β ∈ D1(m). To conclude,

D1(m) = {β ∈M∗ : mβm = 0}. �
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Theorem 3.5. Let M be a regular module and m1,m2 ∈ M . Then the

following are equivalent:

(1) m1 ≤− m2;

(2) {m(1)
2 } ∩ {m

(1)
1 } 6= ∅ and D1(m2) ⊆ D1(m1).

Proof. (1)⇒ (2) By Theorem 3.2, we have {m(1)
2 } ⊆ {m

(1)
1 }. Sincem2 ∈M

is regular, there exists ϕ ∈M∗ such that m2 = m2ϕm2. It follows, ϕ ∈ {m(1)
2 } ∩

{m(1)
1 } and so {m(1)

2 } ∩ {m
(1)
1 } 6= ∅. Let now β ∈ D1(m2). By the definition

of D1(m2), there exists ϕ, α ∈ {m(1)
2 } ⊆ {m

(1)
1 } such that β = ϕ − α, and so

β ∈ D1(m1). Hence D1(m2) ⊆ D1(m1).

(2)⇒ (1) Since {m(1)
2 }∩{m

(1)
1 } 6= ∅, there exists ϕ ∈M∗ such that ϕ ∈ {m(1)

2 }∩
{m(1)

1 }. We will show that m1 = m1ϕm2 = m2ϕm1 = m1ϕm1. From ϕ ∈
{m(1)

2 } ∩ {m
(1)
1 } we get m1 = m1ϕm1 and m2 = m2ϕm2. Hence, on the one

hand,

m2(1R − ϕm2)M∗m2 = {0},

and so by Lemma 3.4, (1R−ϕm2)M∗ ⊆ D1(m2) ⊆ D1(m1). Again, by Lemma 3.4,

m1(1R − ϕm2)M∗m1 = {0}, and thus m1(1R − ϕm2)M∗m1(1R − ϕm2) = {0}.
Let x := m1(1R − ϕm2). It follows that xM∗x = {0}. Regularity of M implies

that there exists ϕx ∈ M∗ such that x = xϕxx. Hence 0 = xϕxx = x, and so

m1 = m1ϕm2. On the other hand,

m2M
∗(1S −m2ϕ)m2 = {0},

and so M∗(1S − m2ϕ) ⊆ D1(m2) ⊆ D1(m1). By Lemma 3.4, m1M
∗(1S −

m2ϕ)m1 = {0}. Similarly, regularity of M implies that m1 = m2ϕm1. We may

conclude by Lemma 3.1(2) that m1 ≤− m2. �

Now we are going to define a new relation on modules which is analogous to

the definition of the space pre-order on complex matrices introduced by Mitra

in [6].

Definition 3.6. Let M be a module and m1,m2 ∈ M . We write m1 ≤S m2

if Sm1 ⊆ Sm2 and m1R ⊆ m2R. We call the relation ≤S the space pre-order

on M .

With the next result we will show that the minus order implies the space

pre-order.

Theorem 3.7. Let M be a module and m1,m2 ∈ M . If m1 ≤− m2, then

m1 ≤S m2.
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Proof. Let m1 ≤− m2. By Proposition 2.6, there exist f2 = f ∈ S and

a2 = a ∈ R such that lS(m1) = lS(f), rR(m1) = rR(a), fm1 = fm2, and

m1a = m2a. Since m1 = m1a = m2a ∈ m2R, we have m1R ⊆ m2R. From

m1 = fm1 = fm2 ∈ Sm2 we obtain Sm1 ⊆ Sm2. �

The converse statement of Theorem 3.7 is not true in general as the following

example shows.

Example 3.8. Let Z6 denote the ring of integers modulo 6, and consider the

ring Z6 as a module over itself. For any ring R, since HomR(R,R) ∼= R, we may

take M = R = S = Z6, and also M∗ = Z6. Let m1 = 4 and m2 = 2 in M .

Since 4 = 4 · 4 · 4 and 2 = 2 · 2 · 2, m1 and m2 are regular elements of M . Note

that Z6 is a commutative ring. From 4Z6 = 2Z6 we obtain Sm1 = Sm2 and

m1R = m2R. Therefore m1 ≤S m2. Note that all of the idempotents of Z6 are

0, 1, 3 and 4. Observe also 4 is the only idempotent of Z6 such that lS(m1) = lS(f)

and rR(m1) = rR(a) where f2 = f ∈ S and a2 = a ∈ R, i.e., f = a = 4. But

4 · 4 6= 4 · 2, and so fm1 6= fm2 and also m1a 6= m2a. Therefore, m1 6≤− m2.

We will now present new characterizations of the space pre-order on M where

M is a regular module.

Theorem 3.9. Let M be a regular module and m1,m2 ∈ M . Then the

following are equivalent:

(1) m1 ≤S m2;

(2) lS(m2) ⊆ lS(m1) and rR(m2) ⊆ rR(m1);

(3) m1 = m1ϕm2 = m2ϕm1 for all ϕ ∈ {m(1)
2 };

(4) m1D1(m2)m1 = {0}.

Proof. (1)⇒ (2) Clear.

(2) ⇒ (3) Since M is regular, there exists ϕ ∈ M∗ such that m2 = m2ϕm2.

Then m2(1R − ϕm2) = 0 and so 1R − ϕm2 ∈ rR(m2) ⊆ rR(m1). Hence we have

m1(1R − ϕm2) = 0, and thus m1 = m1ϕm2. Also, (1S −m2ϕ)m2 = 0, and so

1S −m2ϕ ∈ lS(m2) ⊆ lS(m1). It follows that (1S −m2ϕ)m1 = 0, which yields

m1 = m2ϕm1.

(3)⇒ (4) Let x ∈ D1(m2). Then there exist ϕ, α ∈ {m(1)
2 } such that x = ϕ− α.

Since m1ϕm1 = m1ϕm2αm1 = m1αm1,

m1xm1 = m1(ϕ− α)m1 = m1ϕm1 −m1αm1 = 0.

Therefore, m1D1(m2)m1 = {0}.
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(4)⇒ (1) Assume that m1D1(m2)m1 = {0}. Since M is regular, there exists ϕ ∈
M∗ such that m2 = m2ϕm2. Then m2(1R−ϕm2) = 0, and so m2(1R−ϕm2)α =

0 for any α ∈ M∗. Since m2(1R − ϕm2)αm2 = 0, (1R − ϕm2)α ∈ D1(m2).

By assumption, we have m1(1R − ϕm2)αm1 = 0, and hence

[m1(1R − ϕm2)]α[m1(1R − ϕm2)] = 0.

Regularity of M implies that m1(1R − ϕm2) = 0, and so m1 = m1ϕm2. Thus

Sm1 ⊆ Sm2. Similarly, we can obtain m1 = m2ϕm1 and so m1R ⊆ m2R. Hence

m1 ≤S m2. �

The next result follows directly from Theorem 3.9 ((1)⇔ (4)) and Lemma 3.4.

Corollary 3.10. LetM be a regular module and m1,m2 ∈M . Then m1 ≤S

m2 if and only if D1(m2) ⊆ D1(m1).

As a direct consequence of Lemma 3.1(2) and (1) ⇔ (3) in Theorem 3.9,

we obtain the following characterization for the minus partial order on regular

modules. Moreover, with the next result, with which we conclude the paper, we in-

troduce a condition under which the converse statement of Theorem 3.7 holds.

Corollary 3.11. Let M be a regular module and m1,m2 ∈ M . Then the

following are equivalent:

(1) m1 ≤− m2;

(2) m1 ≤S m2 and {m(1)
2 } ∩ {m

(1)
1 } 6= ∅.
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[2] D.S. Djordjević, D.S. Rakić and J. Marovt, Minus partial order in Rickart rings, Publ.

Math. Debrecen 87 (2015), 291–305.

[3] R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), 1–13.

[4] A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math.
J. 17 (1960), 147–158.

[5] I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York – Amsterdam, 1968.

[6] S. K. Mitra, Matrix partial orders through generalized inverses: unified theory, Linear
Algebra Appl. 148 (1991), 237–263.



On properties of the minus partial order in regular modules 159

[7] M. Z. Nashed (ed.), Generalized Inverses and Applications, Academic Press, New York –
London, 1976.

[8] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Math-
ematics, 158, Cambridge University Press, Cambridge, 2003.
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