Dergi makalesi Açık Erişim

Measuring Temperature Change at the Nanometer Scale on Gold Nanoparticles by Using Thermoresponsive PEGMA Polymers

Yavuz, Mustafa S.; Citir, Murat; Cavusoglu, Halit; Demirel, Gokhan


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/46453</identifier>
  <creators>
    <creator>
      <creatorName>Yavuz, Mustafa S.</creatorName>
      <givenName>Mustafa S.</givenName>
      <familyName>Yavuz</familyName>
      <affiliation>Selcuk Univ, Dept Met &amp; Mat Engn, TR-42075 Konya, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Citir, Murat</creatorName>
      <givenName>Murat</givenName>
      <familyName>Citir</familyName>
      <affiliation>Abdullah Gul Univ, Mat Sci &amp; Nanotechnol Engn, TR-38080 Kayseri, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Cavusoglu, Halit</creatorName>
      <givenName>Halit</givenName>
      <familyName>Cavusoglu</familyName>
      <affiliation>Selcuk Univ, Dept Phys, TR-42075 Konya, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Demirel, Gokhan</creatorName>
      <givenName>Gokhan</givenName>
      <familyName>Demirel</familyName>
      <affiliation>Gazi Univ, Bioinspired Mat Res Lab, Dept Chem, TR-06500 Ankara, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Measuring Temperature Change At The Nanometer Scale On Gold Nanoparticles By Using Thermoresponsive Pegma Polymers</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/46453</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/cnma.201700081</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Plasmonic heating of gold nanoparticles (AuNPs) under laser illumination is a highly desirable technique, especially for cancer therapy. However, significant drawbacks still remain including uncontrolled heat release from AuNPs, random exposure duration, and selection of the proper laser power without damaging normal healthy cells. Herein, we demonstrate a simple and versatile method to measure temperature variation on the surface of Au nanoparticles under laser irradiation based on a thermoresponsive polymer, poly(ethylene glycol) methylether methacrylate (PEGMA). In this context, a series of PEGMA polymers were synthesized to have different lower critical solution temperature (LCST) values (28-90 degrees C) and conjugated to the surface of spherical AuNPs by a gold-thiolate linkage. According to our strategy, the AuNPs first photothermally absorb light energy and convert it to heat owing to their tailored photothermal characteristics. The generated heat from the AuNPs subsequently dissipates into the surrounding thermoresponsive PEGMA polymer. When the temperature generated on the Au surface upon laser irradiation for a certain exposure time reaches the LCST value of the surrounding PEGMA polymer, the polymer chain collapses. Therefore, the hydrodynamic diameter of the PEGMA-coated AuNPs changes, which can be easily monitored by using dynamic light scattering (DLS). We systematically measured the temperature (28-90 degrees C) generated on the AuNP surfaces by using different laser power densities with varying durations. We believe that the resulting strategy will be very valuable for oncologists to easily predict the minimum laser power and duration needed to destroy the cancer cells through the photothermal effect of Au nanostructures.</description>
  </descriptions>
</resource>
30
7
görüntülenme
indirilme
Görüntülenme 30
İndirme 7
Veri hacmi 1.4 kB
Tekil görüntülenme 29
Tekil indirme 7

Alıntı yap